Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Alzheimers Dement ; 20(10): 6709-6721, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39140361

RESUMO

INTRODUCTION: Brain glucose hypometabolism, indexed by the fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging, is a metabolic signature of Alzheimer's disease (AD). However, the underlying biological pathways involved in these metabolic changes remain elusive. METHODS: Here, we integrated [18F]FDG-PET images with blood and hippocampal transcriptomic data from cognitively unimpaired (CU, n = 445) and cognitively impaired (CI, n = 749) individuals using modular dimension reduction techniques and voxel-wise linear regression analysis. RESULTS: Our results showed that multiple transcriptomic modules are associated with brain [18F]FDG-PET metabolism, with the top hits being a protein serine/threonine kinase activity gene cluster (peak-t(223) = 4.86, P value < 0.001) and zinc-finger-related regulatory units (peak-t(223) = 3.90, P value < 0.001). DISCUSSION: By integrating transcriptomics with PET imaging data, we identified that serine/threonine kinase activity-associated genes and zinc-finger-related regulatory units are highly associated with brain metabolic changes in AD. HIGHLIGHTS: We conducted an integrated analysis of system-based transcriptomics and fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) at the voxel level in Alzheimer's disease (AD). The biological process of serine/threonine kinase activity was the most associated with [18F]FDG-PET in the AD brain. Serine/threonine kinase activity alterations are associated with brain vulnerable regions in AD [18F]FDG-PET. Zinc-finger transcription factor targets were associated with AD brain [18F]FDG-PET metabolism.


Assuntos
Doença de Alzheimer , Encéfalo , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico por imagem , Humanos , Fluordesoxiglucose F18/metabolismo , Masculino , Feminino , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Idoso , Transcriptoma , Hipocampo/metabolismo , Hipocampo/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/diagnóstico por imagem , Idoso de 80 Anos ou mais
2.
Alzheimers Dement ; 20(2): 1239-1249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975513

RESUMO

INTRODUCTION: Detection of Alzheimer's disease (AD) pathophysiology among individuals with mild cognitive changes and those experiencing subjective cognitive decline (SCD) remains challenging. Plasma phosphorylated tau 217 (p-tau217) is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited. METHODS: We employed a novel p-tau217 immunoassay (University of Gothenburg [UGOT] p-tau217) in four independent cohorts (n = 308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired (CU) and mild cognitively impaired (MCI) participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (Barcelonaßeta Brain Research Center's Alzheimer's At-Risk Cohort [ß-AARC]). RESULTS: UGOT p-tau217 showed high accuracy (area under the curve [AUC] = 0.80-0.91) identifying amyloid beta (Aß) pathology, determined either by Aß positron emission tomography or CSF Aß42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aß42/40 ratio (AUC = 0.91). DISCUSSION: UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Encéfalo , Biomarcadores/líquido cefalorraquidiano
3.
Brain Behav Immun ; 110: 175-184, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878332

RESUMO

INTRODUCTION: In Alzheimer's disease clinical research, glial fibrillary acidic protein (GFAP) released/leaked into the cerebrospinal fluid and blood is widely measured and perceived as a biomarker of reactive astrogliosis. However, it was demonstrated that GFAP levels differ in individuals presenting with amyloid-ß (Aß) or tau pathologies. The molecular underpinnings behind this specificity are little explored. Here we investigated biomarker and transcriptomic associations of hippocampal GFAP-positive astrocytes with Aß and tau pathologies in humans and mouse models. METHODS: We studied 90 individuals with plasma GFAP, Aß- and Tau-PET to investigate the association between biomarkers. Then, transcriptomic analysis in hippocampal GFAP-positive astrocytes isolated from mouse models presenting Aß (PS2APP) or tau (P301S) pathologies was conducted to explore differentially expressed genes (DEGs), Gene Ontology terms, and protein-protein interaction networks associated with each phenotype. RESULTS: In humans, we found that plasma GFAP associates with Aß but not tau pathology. Unveiling the unique nature of hippocampal GFAP-positive astrocytic responses to Aß or tau pathologies, mouse transcriptomics showed scarce overlap of DEGs between the Aß. and tau mouse models. While Aß GFAP-positive astrocytes were overrepresented with DEGs associated with proteostasis and exocytosis-related processes, tau hippocampal GFAP-positive astrocytes presented greater abnormalities in functions related to DNA/RNA processing and cytoskeleton dynamics. CONCLUSION: Our results offer insights into Aß- and tau-driven specific signatures in hippocampal GFAP-positive astrocytes. Characterizing how different underlying pathologies distinctly influence astrocyte responses is critical for the biological interpretation of astrocyte biomarkers and suggests the need to develop context-specific astrocyte targets to study AD. FUNDING: This study was supported by Instituto Serrapilheira, Alzheimer's Association, CAPES, CNPq and FAPERGS.


Assuntos
Doença de Alzheimer , Astrócitos , Humanos , Camundongos , Animais , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Hipocampo/metabolismo , Proteínas tau/metabolismo
4.
Alzheimers Dement ; 19(9): 3815-3825, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36919582

RESUMO

INTRODUCTION: Amyloid-ß (Aß) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers. METHODS: We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography Aß, p-tau, and albumin measures. RESULTS: Plasma Aß42/40 better identified CSF Aß42/40 and Aß-PET positivity in individuals with high BBB permeability. An interaction between plasma Aß42/40 and BBB permeability on CSF Aß42/40 was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma Aß was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels. DISCUSSION: These findings suggest that BBB integrity may influence the performance of plasma Aß, but not p-tau, biomarkers in research and clinical settings. HIGHLIGHTS: BBB permeability affects the association between brain and plasma Aß levels. BBB integrity does not affect the association between brain and plasma p-tau levels. Plasma Aß was most affected by BBB permeability in AD-related brain regions. BBB permeability increases with age but not according to cognitive status.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
5.
Alzheimers Dement ; 19(10): 4463-4474, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37534889

RESUMO

INTRODUCTION: Phosphorylated tau (p-tau) biomarkers have been recently proposed to represent brain amyloid-ß (Aß) pathology. Here, we evaluated the plasma biomarkers' contribution beyond the information provided by demographics (age and sex) to identify Aß and tau pathologies in individuals segregated as cognitively unimpaired (CU) and impaired (CI). METHODS: We assessed 138 CU and 87 CI with available plasma p-tau231, 217+ , and 181, Aß42/40, GFAP and Aß- and tau-PET. RESULTS: In CU, only plasma p-tau231 and p-tau217+ significantly improved the performance of the demographics in detecting Aß-PET positivity, while no plasma biomarker provided additional information to identify tau-PET positivity. In CI, p-tau217+ and GFAP significantly contributed to demographics to identify both Aß-PET and tau-PET positivity, while p-tau231 only provided additional information to identify tau-PET positivity. DISCUSSION: Our results support plasma p-tau231 and p-tau217+ as state markers of early Aß deposition, but in later disease stages they inform on tau tangle accumulation. HIGHLIGHTS: It is still unclear how much plasma biomarkers contribute to identification of AD pathology across the AD spectrum beyond the information already provided by demographics (age + sex). Plasma p-tau231 and p-tau217+ contribute to demographic information to identify brain Aß pathology in preclinical AD. In CI individuals, plasma p-tau231 contributes to age and sex to inform on the accumulation of tau tangles, while p-tau217+ and GFAP inform on both Aß deposition and tau pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Plasma , Biomarcadores , Proteínas tau , Tomografia por Emissão de Pósitrons
6.
medRxiv ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38947065

RESUMO

Background: Blood-based biomarkers are gaining grounds for Alzheimer's disease (AD) detection. However, two key obstacles need to be addressed: the lack of methods for multi-analyte assessments and the need for markers of neuroinflammation, vascular, and synaptic dysfunction. Here, we evaluated a novel multi-analyte biomarker platform, NULISAseq CNS disease panel, a multiplex NUcleic acid-linked Immuno-Sandwich Assay (NULISA) targeting ~120 analytes, including classical AD biomarkers and key proteins defining various disease hallmarks. Methods: The NULISAseq panel was applied to 176 plasma samples from the MYHAT-NI cohort of cognitively normal participants from an economically underserved region in Western Pennsylvania. Classical AD biomarkers, including p-tau181 p-tau217, p-tau231, GFAP, NEFL, Aß40, and Aß42, were also measured using Single Molecule Array (Simoa). Amyloid pathology, tau pathology, and neurodegeneration were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and MRI, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA biomarkers and AD pathologies. Spearman correlations were used to compare NULISA and Simoa. Results: NULISA concurrently measured 116 plasma biomarkers with good technical performance, and good correlation with Simoa measures. Cross-sectionally, p-tau217 was the top hit to identify Aß pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aß-PET+ participants, including TIMP3, which regulates brain Aß production, the neurotrophic factor BDNF, the energy metabolism marker MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aß PET-dependent yearly increases in Aß-PET+ participants. Markers with tau PET-dependent longitudinal changes included the microglial activation marker CHIT1, the reactive astrogliosis marker CHI3L1, the synaptic protein NPTX1, and the cerebrovascular markers PGF, PDGFRB, and VEFGA; all previously linked to AD but only reliably measured in cerebrospinal fluid. SQSTM1, the autophagosome cargo protein, exhibited a significant association with neurodegeneration status after adjusting age, sex, and APOE ε4 genotype. Conclusions: Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.

7.
Mol Neurodegener ; 19(1): 68, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385222

RESUMO

BACKGROUND: Blood-based biomarkers are gaining grounds for the detection of Alzheimer's disease (AD) and related disorders (ADRDs). However, two key obstacles remain: the lack of methods for multi-analyte assessments and the need for biomarkers for related pathophysiological processes like neuroinflammation, vascular, and synaptic dysfunction. A novel proteomic method for pre-selected analytes, based on proximity extension technology, was recently introduced. Referred to as the NULISAseq CNS disease panel, the assay simultaneously measures ~ 120 analytes related to neurodegenerative diseases, including those linked to both core (i.e., tau and amyloid-beta (Aß)) and non-core AD processes. This study aimed to evaluate the technical and clinical performance of this novel targeted proteomic panel. METHODS: The NULISAseq CNS disease panel was applied to 176 plasma samples from 113 individuals in the MYHAT-NI cohort of predominantly cognitively normal participants from an economically underserved region in southwestern Pennsylvania, USA. Classical AD biomarkers, including p-tau181, p-tau217, p-tau231, GFAP, NEFL, Aß40, and Aß42, were independently measured using Single Molecule Array (Simoa) and correlations and diagnostic performances compared. Aß pathology, tau pathology, and neurodegeneration (AT(N) statuses) were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and an MRI-based AD-signature composite cortical thickness index, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA and neuroimaging-determined AT(N) biomarkers. RESULTS: NULISA concurrently measured 116 plasma biomarkers with good technical performance (97.2 ± 13.9% targets gave signals above assay limits of detection), and significant correlation with Simoa assays for the classical biomarkers. Cross-sectionally, p-tau217 was the top hit to identify Aß pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aß-PET + participants, including TIMP3, BDNF, MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aß PET-dependent yearly increases in Aß-PET + participants. Novel plasma biomarkers with tau PET-dependent longitudinal changes included proteins associated with neuroinflammation, synaptic function, and cerebrovascular integrity, such as CHIT1, CHI3L1, NPTX1, PGF, PDGFRB, and VEGFA; all previously linked to AD but only reliable when measured in cerebrospinal fluid. The autophagosome cargo protein SQSTM1 exhibited significant association with neurodegeneration after adjusting age, sex, and APOE ε4 genotype. CONCLUSIONS: Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes, consistent with the recently revised biological and diagnostic framework. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.


Assuntos
Doença de Alzheimer , Biomarcadores , Doenças Neuroinflamatórias , Proteômica , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Humanos , Biomarcadores/sangue , Masculino , Feminino , Proteômica/métodos , Idoso , Doenças Neuroinflamatórias/sangue , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Pessoa de Meia-Idade , Proteínas tau/sangue , Proteínas tau/metabolismo
8.
Res Sq ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39184102

RESUMO

Previous studies have shown that glial and neuronal changes may trigger synaptic dysfunction in Alzheimer's disease(AD). However, the link between glial and neuronal markers and synaptic abnormalities in the living brain is poorly understood. Here, we investigated the association between biomarkers of astrocyte and microglial reactivity and synaptic dysfunction in 478 individuals across the aging and AD spectrum from two cohorts with available CSF measures of amyloid-ß(Aß), phosphorylated tau(pTau181), astrocyte reactivity(GFAP), microglial activation(sTREM2), and synaptic biomarkers(GAP43 and neurogranin). Elevated CSF GFAP levels were linked to presynaptic and postsynaptic dysfunction, regardless of cognitive status or Aß presence. CSF sTREM2 levels were associated with presynaptic biomarkers in cognitively unimpaired and impaired Aß + individuals and postsynaptic biomarkers in cognitively impaired Aß + individuals. Notably, CSF pTau181 levels mediated all associations between GFAP or sTREM2 levels and synaptic dysfunction biomarkers. These results suggest that neuronal-related synaptic biomarkers could be used in clinical trials targeting glial reactivity in AD.

9.
Neurobiol Aging ; 136: 88-98, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335912

RESUMO

Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-ß1-42 (Aß1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF Aß1-42 or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Humanos , Idoso , Feminino , Proteínas tau/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Cognição/fisiologia , Progressão da Doença
10.
Brain Commun ; 5(4): fcad216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601408

RESUMO

Fibronectin type III domain-containing protein 5 (FNDC5) and its derived hormone, irisin, have been associated with metabolic control in humans, with described FNDC5 single nucleotide polymorphisms being linked to obesity and metabolic syndrome. Decreased brain FNDC5/irisin has been reported in subjects with dementia due to Alzheimer's disease. Since impaired brain glucose metabolism develops in ageing and is prominent in Alzheimer's disease, here, we examined associations of a single nucleotide polymorphism in the FNDC5 gene (rs1746661) with brain glucose metabolism and amyloid-ß deposition in a cohort of 240 cognitively unimpaired and 485 cognitively impaired elderly individuals from the Alzheimer's Disease Neuroimaging Initiative. In cognitively unimpaired elderly individuals harbouring the FNDC5 rs1746661(T) allele, we observed a regional reduction in low glucose metabolism in memory-linked brain regions and increased brain amyloid-ß PET load. No differences in cognition or levels of cerebrospinal fluid amyloid-ß42, phosphorylated tau and total tau were observed between FNDC5 rs1746661(T) allele carriers and non-carriers. Our results indicate that a genetic variant of FNDC5 is associated with low brain glucose metabolism in elderly individuals and suggest that FNDC5 may participate in the regulation of brain metabolism in brain regions vulnerable to Alzheimer's disease pathophysiology. Understanding the associations between genetic variants in metabolism-linked genes and metabolic brain signatures may contribute to elucidating genetic modulators of brain metabolism in humans.

11.
Cannabis Cannabinoid Res ; 8(1): 77-91, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36394442

RESUMO

Background: Alterations in the endocannabinoid system (ES) have been described in Alzheimer's disease (AD) pathophysiology. In the past years, multiple ES biomarkers have been developed, promising to advance our understanding of ES changes in AD. Discussion: ES biomarkers, including positron emission tomography with cannabinoid receptors tracers and biofluid-based endocannabinoids, are associated with AD disease progression and pathological features. Conclusion: Although not specific enough for AD diagnosis, ES biomarkers hold promise for prognosis, drug-target engagement, and a better understanding of the disease. Here, we summarize currently available ES biomarker findings and discuss their potential applications in the AD research field.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Endocanabinoides , Receptores de Canabinoides , Tomografia por Emissão de Pósitrons , Biomarcadores , Progressão da Doença
12.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873312

RESUMO

INTRODUCTION: Detection of Alzheimer's disease (AD) pathophysiology among cognitively unimpaired individuals and those experiencing subjective cognitive decline (SCD) remains challenging. Plasma p-tau217 is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited. METHODS: We employed a novel p-tau217 immunoassay (UGOT p-tau217) in four independent cohorts (n=308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (ß-AARC). RESULTS: UGOT p-tau217 showed high accuracy (AUC= 0.80-0.91) identifying Aß pathology, determined either by Aß positron emission tomography or CSF Aß42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aß42/40 ratio (AUC= 0.91). DISCUSSION: UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.

13.
Neurology ; 101(1): 38-45, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878697

RESUMO

OBJECTIVE: To test the utility of longitudinal changes in plasma phosphorylated tau 181 (p-tau181) and neurofilament light chain (NfL) as surrogate markers for clinical trials targeting cognitively unimpaired (CU) populations. METHODS: We estimated the sample size needed to test a 25% drug effect with 80% of power at a 0.05 level on reducing changes in plasma markers in CU participants from Alzheimer's Disease Neuroimaging Initiative database. RESULTS: We included 257 CU individuals (45.5% males; mean age = 73 [6] years; 32% ß-amyloid [Aß] positive). Changes in plasma NfL were associated with age, whereas changes in plasma p-tau181 with progression to amnestic mild cognitive impairment. Clinical trials using p-tau181 and NfL would require 85% and 63% smaller sample sizes, respectively, for a 24-month than a 12-month follow-up. A population enrichment strategy using intermediate levels of Aß PET (Centiloid 20-40) further reduced the sample size of the 24-month clinical trial using p-tau181 (73%) and NfL (59%) as a surrogate. DISCUSSION: Plasma p-tau181/NfL can potentially be used to monitor large-scale population interventions in CU individuals. The enrollment of CU with intermediate Aß levels constitutes the alternative with the largest effect size and most cost-effective for trials testing drug effect on changes in plasma p-tau181 and NfL.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Humanos , Idoso , Feminino , Filamentos Intermediários , Projetos de Pesquisa , Biomarcadores , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Proteínas tau
14.
Res Sq ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778243

RESUMO

An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid ß (Aß)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes are key to unleashing Aß effects in pathological tau phosphorylation. In a large study ( n =1,016) across three cohorts, we tested whether astrocyte reactivity modulates the association of Aß with plasma tau phosphorylation in CU people. We found that Aß pathology was associated with increased plasma phosphorylated tau levels only in individuals positive for astrocyte reactivity (Ast+). Cross-sectional and longitudinal tau-PET analysis revealed that tau tangles accumulated as a function of Aß burden only in CU Ast+ individuals with a topographic distribution compatible with early AD. Our findings suggest that increased astrocyte reactivity is an important upstream event linking Aß burden with initial tau pathology which might have implications for the biological definition of preclinical AD and for selecting individuals for early preventive clinical trials.

15.
Nat Med ; 29(7): 1775-1781, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248300

RESUMO

An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-ß (Aß)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash Aß effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of Aß with tau phosphorylation in CU individuals. We found that Aß was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast+). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of Aß only in CU Ast+ individuals. Our findings suggest astrocyte reactivity as an important upstream event linking Aß with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Astrócitos/patologia , Biomarcadores , Estudos Transversais , Tomografia por Emissão de Pósitrons , Proteínas tau
16.
Nat Aging ; 3(10): 1210-1218, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37749258

RESUMO

The mechanisms by which the apolipoprotein E ε4 (APOEε4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOEε4 carriership and amyloid-ß (Aß) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for Aß ([18F]AZD4694) and tau ([18F]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOEε4 carriership potentiates Aß effects on longitudinal tau accumulation over 2 years. The APOEε4-potentiated Aß effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217+) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOEε4 allele plays a key role in Aß downstream effects on the aggregation of phosphorylated tau in the living human brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Apolipoproteína E4 , Heterozigoto , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Proteínas tau/genética , Apolipoproteína E4/genética , Alelos
17.
Sci Adv ; 9(14): eade1474, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018391

RESUMO

Animal studies suggest that the apolipoprotein E ε4 (APOEε4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOEε4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomography for amyloid-ß (Aß; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOEε4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for Aß and tau deposition. Furthermore, microglial activation mediated the Aß-independent effects of APOEε4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOEε4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOEε4 genotype exerts Aß-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition.


Assuntos
Doença de Alzheimer , Microglia , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo , Lobo Temporal/metabolismo , Apolipoproteínas E/metabolismo
18.
JAMA Netw Open ; 6(11): e2345175, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010651

RESUMO

Importance: Neuropsychiatric symptoms are commonly encountered and are highly debilitating in patients with Alzheimer disease. Understanding their underpinnings has implications for identifying biomarkers and treatment for these symptoms. Objective: To evaluate whether glial markers are associated with neuropsychiatric symptoms in individuals across the Alzheimer disease continuum. Design, Setting, and Participants: This cross-sectional study was conducted from January to June 2023, leveraging data from the Translational Biomarkers in Aging and Dementia cohort at McGill University, Canada. Recruitment was based on referrals of individuals from the community or from outpatient clinics. Exclusion criteria included active substance abuse, major surgery, recent head trauma, safety contraindications for positron emission tomography (PET) or magnetic resonance imaging, being currently enrolled in other studies, and having inadequately treated systemic conditions. Main Outcomes and Measures: All individuals underwent assessment for neuropsychiatric symptoms (Neuropsychiatry Inventory Questionnaire [NPI-Q]), and imaging for microglial activation ([11C]PBR28 PET), amyloid-ß ([18F]AZD4694 PET), and tau tangles ([18F]MK6240 PET). Results: Of the 109 participants, 72 (66%) were women and 37 (34%) were men; the median age was 71.8 years (range, 38.0-86.5 years). Overall, 70 had no cognitive impairment and 39 had cognitive impairment (25 mild; 14 Alzheimer disease dementia). Amyloid-ß PET positivity was present in 21 cognitively unimpaired individuals (30%) and in 31 cognitively impaired individuals (79%). The NPI-Q severity score was associated with microglial activation in the frontal, temporal, and parietal cortices (ß = 7.37; 95% CI, 1.34-13.41; P = .01). A leave-one-out approach revealed that irritability was the NPI-Q domain most closely associated with the presence of brain microglial activation (ß = 6.86; 95% CI, 1.77-11.95; P = .008). Furthermore, we found that microglia-associated irritability was associated with study partner burden measured by NPI-Q distress score (ß = 5.72; 95% CI, 0.33-11.10; P = .03). Conclusions and Relevance: In this cross-sectional study of 109 individuals across the AD continuum, microglial activation was associated with and a potential biomarker of neuropsychiatric symptoms in Alzheimer disease. Moreover, our findings suggest that the combination of amyloid-ß- and microglia-targeted therapies could have an impact on relieving these symptoms.


Assuntos
Doença de Alzheimer , Masculino , Humanos , Feminino , Idoso , Doença de Alzheimer/patologia , Microglia/patologia , Proteínas tau , Estudos Transversais , Peptídeos beta-Amiloides , Biomarcadores
19.
J Real Time Image Process ; 18(6): 2495-2510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131447

RESUMO

The digital video coding process imposes severe pressure on memory traffic, leading to considerable power consumption related to frequent DRAM accesses. External off-chip memory demand needs to be minimized by clever architecture/algorithm co-design, thus saving energy and extending battery lifetime during video encoding. To exploit temporal redundancies among neighboring frames, the motion estimation (ME) algorithm searches for good matching between the current block and blocks within reference frames stored in external memory. To save energy during ME, this work performs memory accesses distribution analysis of the test zone search (TZS) ME algorithm and, based on this analysis, proposes both a multi-sector scratchpad memory design and dynamic management for the TZS memory access. Our dynamic memory management, called neighbor management, reduces both static consumption-by employing sector-level power gating-and dynamic consumption-by reducing the number of accesses for ME execution. Additionally, our dynamic management was integrated with two previously proposed solutions: a hardware reference frame compressor and the Level C data reuse scheme (using a scratchpad memory). This system achieves a memory energy consumption savings of 99.8 % and, when compared to the baseline solution composed of a reference frame compressor and data reuse scheme, the memory energy consumption was reduced by 44.1 % at a cost of just 0.35 % loss in coding efficiency, on average. When compared with related works, our system presents better memory bandwidth/energy savings and coding efficiency results.

20.
Cell Biosci ; 11(1): 204, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895338

RESUMO

BACKGROUND: Changes in soluble amyloid-beta (Aß) levels in cerebrospinal fluid (CSF) are detectable at early preclinical stages of Alzheimer's disease (AD). However, whether Aß levels can predict downstream AD pathological features in cognitively unimpaired (CU) individuals remains unclear. With this in mind, we aimed at investigating whether a combination of soluble Aß isoforms can predict tau pathology (T+) and neurodegeneration (N+) positivity. METHODS: We used CSF measurements of three soluble Aß peptides (Aß1-38, Aß1-40 and Aß1-42) in CU individuals (n = 318) as input features in machine learning (ML) models aiming at predicting T+ and N+. Input data was used for building 2046 tuned predictive ML models with a nested cross-validation technique. Additionally, proteomics data was employed to investigate the functional enrichment of biological processes altered in T+ and N+ individuals. RESULTS: Our findings indicate that Aß isoforms can predict T+ and N+ with an area under the curve (AUC) of 0.929 and 0.936, respectively. Additionally, proteomics analysis identified 17 differentially expressed proteins (DEPs) in individuals wrongly classified by our ML model. More specifically, enrichment analysis of gene ontology biological processes revealed an upregulation in myelinization and glucose metabolism-related processes in CU individuals wrongly predicted as T+. A significant enrichment of DEPs in pathways including biosynthesis of amino acids, glycolysis/gluconeogenesis, carbon metabolism, cell adhesion molecules and prion disease was also observed. CONCLUSIONS: Our results demonstrate that, by applying a refined ML analysis, a combination of Aß isoforms can predict T+ and N+ with a high AUC. CSF proteomics analysis highlighted a promising group of proteins that can be further explored for improving T+ and N+ prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA