Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(11): e0042022, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314787

RESUMO

Malaria is a mosquito-borne fatal infectious disease that affects humans and is caused by Plasmodium parasites, primarily Plasmodium falciparum. Widespread drug resistance compels us to discover novel compounds and alternative drug discovery targets. The coenzyme A (CoA) biosynthesis pathway is essential for the malaria parasite P. falciparum. The last enzyme in CoA biosynthesis, dephospho-CoA kinase (DPCK), is essential to the major life cycle development stages but has not yet been exploited as a drug target in antimalarial drug discovery. We performed a high-throughput screen of a 210,000-compound library using recombinant P. falciparum DPCK (PfDPCK). A high-throughput enzymatic assay using a 1,536-well platform was developed to identify potential PfDPCK inhibitors. PfDPCK inhibitors also inhibited parasite growth in a P. falciparum whole-cell asexual blood-stage assay in both drug-sensitive and drug-resistant strains. Hit compounds were selected based on their potency in cell-free (PfDPCK) and whole-cell (Pf3D7 and PfDd2) assays, selectivity over the human orthologue (HsCOASY) and no cytotoxicity (HepG2). The compounds were ranked using a multiparameter optimization (MPO) scoring model, and the specific binding and the mechanism of inhibition were investigated for the most promising compounds.


Assuntos
Antimaláricos , Coenzima A , Plasmodium falciparum , Animais , Humanos , Antimaláricos/uso terapêutico , Coenzima A/antagonistas & inibidores , Coenzima A/metabolismo , Ensaios de Triagem em Larga Escala , Estágios do Ciclo de Vida , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Células Hep G2
2.
Biochim Biophys Acta Bioenerg ; 1859(3): 191-200, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29269266

RESUMO

Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc1 complex inhibitor.


Assuntos
Membranas Mitocondriais/enzimologia , Oxirredutases/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Antimaláricos/farmacologia , Atovaquona/farmacologia , Biocatálise/efeitos dos fármacos , Cumarínicos/farmacologia , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malatos/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Ácido Oxaloacético/metabolismo , Oxirredutases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores
3.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37259413

RESUMO

This study aimed to obtain a microbial active compound as a novel antimalarial drug from Indonesian isolates. Target-based assays were used to screen for antimalarial activity against the parasite mitochondrial, Plasmodium falciparum malate:quinone oxidoreductase (PfMQO) enzyme. In total, 1600 crude extracts, composed from 800 fungi and 800 actinomycetes extracts, were screened against PfMQO, yielding six active extracts as primary hits. After several stages of stability tests, one extract produced by Aspergillus sp. BioMCC f.T.8501 demonstrated stable PfMQO inhibitory activity. Several purification stages, including OCC, TLC, and HPLC, were performed to obtain bioactive compounds from this active extract. All purification steps were followed by an assay against PfMQO. We identified the active compound as nornidulin based on its LC-MS and UV spectrum data. Nornidulin inhibited PfMQO activity at IC50 of 51 µM and P. falciparum 3D7 proliferation in vitro at IC50 of 44.6 µM, however, it had no effect on the growth of several mammalian cells. In conclusion, we isolated nornidulin from Indonesian Aspergillus sp. BioMCC f.T.8501 as a novel inhibitor of PfMQO, which showed inhibitory activity against the proliferation of P. falciparum 3D7 in vitro.

4.
J Gen Appl Microbiol ; 67(3): 114-117, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33814517

RESUMO

Two Indonesian fungi Aspergillus assiutensis BioMCC-f.T.7495 and Penicillium pedernalense BioMCC-f.T.5350 along with a Japanese fungus Hypomyces pseudocorticiicola FKI-9008 have been found to produce gentisyl alcohol (1), which inhibits Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) with an IC50 value of 3.4 µM. Another Indonesian fungus, Penicillium citrinum BioMCC-f.T.6730, produced an analog of 1, homogentisic acid (4), which also inhibits PfDHODH with an IC50 value of 47.6 µM.


Assuntos
Álcoois Benzílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fungos/química , Ácido Homogentísico/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Álcoois Benzílicos/química , Álcoois Benzílicos/isolamento & purificação , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Fungos/classificação , Ácido Homogentísico/química , Ácido Homogentísico/isolamento & purificação , Concentração Inibidora 50 , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores
5.
Parasitol Int ; 85: 102432, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34363974

RESUMO

Microorganisms in nature are highly diverse biological resources, which can be explored for drug discovery. Some countries including Brazil, Columbia, Indonesia, China, and Mexico, which are blessed with geographical uniqueness with diverse climates and display remarkable megabiodiversity, potentially provide microorganismal resources for such exploitation. In this review, as an example of drug discovery campaigns against tropical parasitic diseases utilizing microorganisms from such a megabiodiversity country, we summarize our past and on-going activities toward discovery of new antimalarials. The program was held in a bilateral collaboration between multiple Indonesian and Japanese research groups. In order to develop a new platform of drug discovery utilizing Indonesian bioresources under an international collaborative scheme, we aimed at: 1) establishment of an Indonesian microbial depository, 2) development of robust enzyme-based and cell-based screening systems, and 3) technology transfer necessary for screening, purification, and identification of antimalarial compounds from microbial culture broths. We collected, characterized, and deposited Indonesian microbes. We morphologically and genetically characterized fungi and actinomycetes strains isolated from 5 different locations representing 3 Indonesian geographical areas, and validated genetic diversity of microbes. Enzyme-based screening was developed against two validated mitochondrial enzymes from Plasmodium falciparum, dihydroorotate dehydrogenase and malate:quinone oxidoreductase, while cell-based proliferation assay was developed using the erythrocytic stage parasite of 3D7 strain. More than 17 thousands microbial culture extracts were subjected to the enzyme- and cell-based screening. Representative anti-malarial compounds discovered in this campaign are discussed, including a few isolated compounds that have been identified for the first time as anti-malarial compounds. Our antimalarial discovery campaign validated the Indonesian microbial library as a powerful resource for drug discovery. We also discuss critical needs for selection criteria for hits at each stage of screening and hit deconvolution such as preliminary extraction test for the initial profiling of the active compounds and dereplication techniques to minimize repetitive discovery of known compounds.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Descoberta de Drogas , Plasmodium falciparum/efeitos dos fármacos , Indonésia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA