Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
World J Microbiol Biotechnol ; 40(1): 32, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057660

RESUMO

Para-amino salicylic acid (PAS) was first reported by Lehmann in 1946 and used for tuberculosis treatment. However, due to its adverse effects, it is now used only as a second line anti-tuberculosis drug for treatment of multidrug resistant or extensively drug resistant M. tuberculosis. The structure of PAS is similar to para-amino benzoic acid (pABA), an intermediate metabolite in the folate synthesis pathway. The study has identified mutations in genes in folate pathway and their intergenic regions for their possibilities in responsible for PAS resistance. Genomic DNA from 120 PAS-resistant and 49 PAS-sensitive M. tuberculosis isolated from tuberculosis patients in Thailand were studied by whole genome sequencing. Twelve genes in the folate synthesis pathway were investigated for variants associated with PAS resistance. Fifty-one SNVs were found in nine genes and their intergenic regions (pabC, pabB, folC, ribD, thyX, dfrA, thyA, folK, folP). Functional correlation test confirmed mutations in RibD, ThyX, and ThyA are responsible for PAS resistance. Detection of mutation in thyA, folC, intergenic regions of thyX, ribD, and double deletion of thyA dfrA are proposed for determination of PAS resistant M. tuberculosis.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Tailândia , Farmacorresistência Bacteriana , Ácido Aminossalicílico/farmacologia , Tuberculose/genética , Antituberculosos/farmacologia , Mycobacterium tuberculosis/genética , Mutação , Ácido Fólico/farmacologia , Sequenciamento Completo do Genoma , DNA Intergênico , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-29061759

RESUMO

New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 µg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 µg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 µg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 µg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


Assuntos
Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Fluoroquinolonas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , DNA Girase/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Tailândia
3.
Ann Clin Microbiol Antimicrob ; 17(1): 33, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30008266

RESUMO

BACKGROUND: Aminoglycosides such as amikacin and kanamycin are effective injectable second-line drugs for treatment of multidrug-resistant tuberculosis. Molecular mechanisms underlying aminoglycoside resistance are not well understood. We have previously identified the amikacin- and kanamycin-resistant M. tuberculosis MT433 clinical strain, of which all known mutations related to resistance have not been found. Drug efflux pump is one of reported resistance mechanisms that might play a role in aminoglycoside resistance. METHODS: The expression levels of sixteen putative efflux pump genes, including eis and one regulator gene, whiB7, of MT433 in the presence of kanamycin were determined using the reverse transcription-quantitative PCR method. The effects of upregulated genes on amikacin and kanamycin resistance were investigated by overexpression in M. tuberculosis H37Ra strain. RESULTS: Upon kanamycin exposure, other than whiB7 and eis that were found extremely overexpressed, two drug efflux pump genes, namely Rv1877 and Rv2846c, showed specifically high-level of expression in M. tuberculosis MT433 strain. However, direct effect of overexpressed Rv1877 and Rv2846c on amikacin and kanamycin resistance could not be demonstrated in M. tuberculosis H37Ra overexpressed strain. CONCLUSIONS: Our finding demonstrated that overexpression of eis could occur without any mutations in the promoter region and be detectable in clinical isolate. This might be a consequence of overexpressed whiB7, resulting in amikacin and kanamycin resistance in M. tuberculosis MT433 strain.


Assuntos
Acetiltransferases/genética , Amicacina/farmacologia , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Expressão Gênica/efeitos dos fármacos , Canamicina/farmacologia , Mutação/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/genética
4.
Antimicrob Agents Chemother ; 60(9): 5189-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27297489

RESUMO

DNA gyrase mutations are a major cause of quinolone resistance in Mycobacterium tuberculosis We therefore conducted the first comprehensive study to determine the diversity of gyrase mutations in pre-extensively drug-resistant (pre-XDR) (n = 71) and extensively drug-resistant (XDR) (n = 30) Thai clinical tuberculosis (TB) isolates. All pre-XDR-TB and XDR-TB isolates carried at least one mutation within the quinolone resistance-determining region of GyrA (G88A [1.1%], A90V [17.4%], S91P [1.1%], or D94A/G/H/N/V/Y [72.7%]) or GyrB (D533A [1.1%], N538D [1.1%], or E540D [2.2%]). MIC and DNA gyrase supercoiling inhibition assays were performed to determine the role of gyrase mutations in quinolone resistance. Compared to the MICs against M. tuberculosis H37Rv, the levels of resistance to all quinolones tested in the isolates that carried GyrA-D94G or GyrB-N538D (8- to 32-fold increase) were significantly higher than those in isolates bearing GyrA-D94A or GyrA-A90V (2- to 8-fold increase) (P < 0.01). Intriguingly, GyrB-E540D led to a dramatic resistance to later-generation quinolones, including moxifloxacin, gatifloxacin, and sparfloxacin (8- to 16-fold increases in MICs and 8.3- to 11.2-fold increases in 50% inhibitory concentrations [IC50s]). However, GyrB-E540D caused low-level resistance to early-generation quinolones, including ofloxacin, levofloxacin, and ciprofloxacin (2- to 4-fold increases in MICs and 1.5- to 2.0-fold increases in IC50s). In the present study, DC-159a was the most active antituberculosis agent and was little affected by the gyrase mutations described above. Our findings suggest that although they are rare, gyrB mutations have a notable role in quinolone resistance, which may provide clues to the molecular basis of estimating quinolone resistance levels for drug and dose selection.


Assuntos
Aminopiridinas/farmacologia , Antituberculosos/farmacologia , DNA Girase/genética , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Ciprofloxacina/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Gatifloxacina , Expressão Gênica , Humanos , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Moxifloxacina , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/isolamento & purificação , Ofloxacino/farmacologia , Tailândia/epidemiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia
5.
Mol Genet Genomics ; 290(5): 1933-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25903079

RESUMO

The Mycobacterium tuberculosis Beijing family is often associated with multidrug resistance and large outbreaks. Conventional genotyping study of a community outbreak of multidrug-resistant tuberculosis (MDR-TB) that occurred in Kanchanaburi Province, Thailand was carried out. The study revealed that the outbreak was clonal and the strain was identified as a member of Beijing family. Although, the outbreak isolates showed identical spoligotyping and mycobacterial interspersed repetitive units-variable number tandem repeats patterns, a discrepancy regarding ethambutol resistance was observed. In-depth characterization of the isolates through whole genome sequencing of the first and the last three isolates from our culture collection showed them to belong to principal genetic group 1, single nucleotide polymorphism (SNP) cluster group 2, sequence type 10. Compared with the M. tuberculosis H37Rv reference genome, 1242 SNPs were commonly found in all isolates. The genomes of these isolates were shown to be clonal and highly stable over a 5-year period and two or three unique SNPs were identified in each of the last three isolates. Genes known to be associated with drug resistance and their promoter regions, where applicable, were analyzed. The presence of low or no fitness cost mutations for drug resistance and an additional L731P SNP in the rpoB gene was observed in all isolates. These findings might account for the successful transmission of this MDR-TB strain.


Assuntos
Surtos de Doenças , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Tailândia/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
6.
J Clin Microbiol ; 52(6): 1962-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24671786

RESUMO

A multipurpose high-throughput genotyping tool for the assessment of recent epidemiological data and evolutional pattern in Mycobacterium tuberculosis complex (MTBC) clinical isolates was developed in this study. To facilitate processing, 51 highly informative single nucleotide polymorphisms (SNPs) were selected for discriminating the clinically most relevant MTBC species and genotyping M. tuberculosis into its principle genetic groups (PGGs) and SNP cluster groups (SCGs). Because of the high flexibility of the DigiTag2 assay, the identical protocol and DNA array containing the identical set of probes were applied to the highly GC-rich mycobacterial genome. The specific primers with multiplex amplification and hybridization conditions based on the DigiTag2 principle were optimized and evaluated with 14 MTBC reference strains, 4 nontuberculous mycobacteria (NTM) isolates, and 322 characterized M. tuberculosis clinical isolates. The DNA chip that was developed revealed a 99.85% call rate, a 100% conversion rate, and 99.75% reproducibility. For the accuracy rate, 98.94% of positive calls were consistent with previous molecular characterizations. Our cost-effective technology was capable of simultaneously identifying the MTBC species and the genotypes of 96 M. tuberculosis clinical isolates within 6 h using only simple instruments, such as a thermal cycler, a hybridization oven, and a DNA chip scanner, and less technician skill was required than for other techniques. We demonstrate this approach's potential as a simple, flexible, and rapid tool for providing clearer information regarding circulating MTBC isolates.


Assuntos
Técnicas de Genotipagem/métodos , Ensaios de Triagem em Larga Escala , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Tuberculose/microbiologia , Análise por Conglomerados , Primers do DNA/genética , DNA Bacteriano/genética , Humanos , Epidemiologia Molecular/métodos , Sondas de Oligonucleotídeos/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Tuberculose/epidemiologia
7.
J Clin Microbiol ; 52(12): 4267-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25297330

RESUMO

This study examined the genetic diversity and dynamicity of circulating Mycobacterium tuberculosis strains in Thailand using nearly neutral molecular markers. The single nucleotide polymorphism (SNP)-based genotypes of 1,414 culture-positive M. tuberculosis isolates from 1,282 pulmonary tuberculosis (PTB) and 132 extrapulmonary TB (EPTB) patients collected from 1995 to 2011 were characterized. Among the eight SNP cluster groups (SCG), SCG2 (44.1%), which included the Beijing (BJ) genotype, and SCG1 (39.4%), an East African Indian genotype, were dominant. Comparisons between the genotypes of M. tuberculosis isolates causing PTB and EPTB in HIV-negative cases revealed similar prevalence trends although genetic diversity was higher in the PTB patients. The identification of 10 reported sequence types (STs) and three novel STs was hypothesized to indicate preferential expansion of the SCG2 genotype, especially the modern BJ ST10 (15.6%) and ancestral BJ ST19 (13.1%). An association between SCG2 and SCG1 genotypes and particular patient age groups implies the existence of different genetic advantages among the bacterial populations. The results revealed that increasing numbers of young patients were infected with M. tuberculosis SCGs 2 and 5, which contrasts with the reduction of the SCG1 genotype. Our results indicate the selection and dissemination of potent M. tuberculosis genotypes in this population. The determination of heterogeneity and dynamic population changes of circulating M. tuberculosis strains in countries using the Mycobacterium bovis BCG (bacillus Calmette-Guérin) vaccine are beneficial for vaccine development and control strategies.


Assuntos
Variação Genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Tuberculose/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Mycobacterium tuberculosis/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Prevalência , Tailândia/epidemiologia , Adulto Jovem
8.
BMC Microbiol ; 14: 165, 2014 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-24953243

RESUMO

BACKGROUND: The emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) makes the treatment and control of tuberculosis difficult. Rapid detection of drug-resistant strains is important for the successful treatment of drug-resistant tuberculosis; however, not all resistance mechanisms to the injectable second-line drugs such as amikacin (AK), kanamycin (KM), and capreomycin (CAP) are well understood. This study aims to validate the mechanisms associated with AK, KM, and CAP resistance in M. tuberculosis clinical strains isolated in Thailand. RESULTS: A total of 15,124 M. tuberculosis clinical strains were isolated from 23,693 smear-positive sputum samples sent from 288 hospitals in 46 of 77 provinces of Thailand. Phenotypic analysis identified 1,294 strains as MDR-TB and second-line drugs susceptibility was performed in all MDR-TB strains and revealed 58 XDR-TB strains. Twenty-nine KM-resistant strains (26 XDR-TB and 3 MDR-TB) could be retrieved and their genes associated with AK, KM, and CAP resistance were investigated compared with 27 KM-susceptible strains. Mutation of the rrs (A1401G) was found in 21 out of 29 KM-resistant strains whereas mutations of eis either at C-14 T or at G-37 T were found in 5 strains. Three remaining KM-resistant strains did not contain any known mutations. Capreomycin resistance was determined in 28 of 29 KM-resistant strains. Analysis of tlyA revealed that the A33G mutation was found in all CAP-resistant strains and also in susceptible strains. In contrast, the recently identified tlyA mutation T539G and the novel Ins49GC were found in two and one CAP-resistant strains, respectively. In addition, our finding demonstrated the insertion of cytosine at position 581 of the tap, a putative drug efflux encoding gene, in both KM-resistant and KM-susceptible strains. CONCLUSIONS: Our finding demonstrated that the majority of KM resistance mechanism in Thai M. tuberculosis clinical strains was rrs mutation at A1401G. Mutations of the eis promoter region either at C-14 T or G-37 T was found in 5 of 29 strains whereas three strains did not contain any known mutations. For CAP resistance, 3 of 28 CAP-resistant strains contained either T539G or Ins49GC mutations at tlyA that might be associated with the resistant phenotype.


Assuntos
Amicacina/farmacologia , Antituberculosos/farmacologia , Capreomicina/farmacologia , Farmacorresistência Bacteriana Múltipla , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Canamicina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/genética , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Mutação Puntual , Escarro/microbiologia , Tailândia
9.
Asian Pac J Allergy Immunol ; 32(2): 124-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25003725

RESUMO

BACKGROUND: The Beijing strain of Mycobacterium tuberculosis (MTB) is of great concern because this hypervirulent strain has caused numerous tuberculosis outbreaks. However, the mechanisms that allow the MTB Beijing strain to be highly pathogenic remain unclear and previous studies have revealed heterogeneity within this family. OBJECTIVE: To determine the association between some phenotypic characteristics and phylogroups of the Beijing strain of MTB. METHODS: Eight Beijing strains, 5 modern and 3 ancestral sublineages, were selected from the phylogroups of MTB. The selection was based on copy number of IS6110 at NTF, region of differences, and single nucleotide polymorphisms. The abilities of these strains to grow intracellularly in THP-1 macrophages, to induce apoptosis, necrosis, and cytokines production were examined using quantitative real-time PCR and commercially available ELISA kits, respectively. RESULTS: There were some significant differences between the two sublineages of the Beijing strain of MTB. The ancestral Beijing sublineages showed higher intracellular growth rates (p < 0.05) and necrosis induction rates (p < 0.01) than the modern Beijing sublineages. By contrast, the modern Beijing sublineages induced lower apoptosis and protective cytokine responses, i.e., TNF-α (p < 0.05) and IL-6 (p < 0.01) and higher non-protective IL-10 response. The modern Beijing sublineages may have evolved so that they have greater ability to diminish host defense mechanisms. The slower growth rate and reduced necrosis induction in host cells might allow the bacteria to cause a persistent infection. CONCLUSION: The results revealed a phylogroup-associated heterogeneity of phenotypes among MTB Beijing sublineages.


Assuntos
Citocinas/metabolismo , Evolução Molecular , Mycobacterium tuberculosis , Polimorfismo Genético , Tuberculose/genética , Tuberculose/metabolismo , Linhagem Celular Tumoral , China , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade
10.
Sci Rep ; 14(1): 1518, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233591

RESUMO

The detection and management of Mycobacterium tuberculosis complex (MTBC) infection, the causative agent of tuberculosis (TB), in macaques, including cynomolgus macaques (Macaca fascicularis), are of significant concern in research and regions where macaques coexist with humans or other animals. This study explored the utility of the Xpert MTB/RIF Ultra assay, a widely adopted molecular diagnostic tool to diagnose tuberculosis (TB) in humans, to detect DNA from the Mycobacterium tuberculosis complex in clinical samples obtained from cynomolgus macaques. This investigation involved a comprehensive comparative analysis, integrating established conventional diagnostic methodologies, assessing oropharyngeal-tracheal wash (PW) and buccal swab (BS) specimen types, and follow-up assessments at 3-month, 6-month, and 12-month intervals. Our results demonstrated that the Xpert MTB/RIF Ultra assay was able to detect MTBC in 12 of 316 clinical samples obtained from cynomolgus macaques, presenting a potential advantage over bacterial culture and chest radiographs. The Xpert MTB/RIF Ultra assay exhibited exceptional sensitivity (100%) at the animal level, successfully detecting all macaques positive for M. tuberculosis as confirmed by traditional culture methods. The use of PW samples revealed that 5 positive samples from 99 (5.1%) were recommended for testing, compared to 0 samples from 99 buccal swab (BS) samples (0.0%). In particular, the definitive diagnosis of TB was confirmed in three deceased macaques by MTB culture, which detected the presence of the bacterium in tissue autopsy. Our findings demonstrate that the implementation of the Xpert MTB/RIF Ultra assay, along with prompt isolation measures, effectively reduced active TB cases among cynomolgus macaques over a 12-month period. These findings highlight the advance of the Xpert MTB/RIF Ultra assay in TB diagnosis and its crucial role in preventing potential outbreaks in cynomolgus macaques. With its rapidity, high sensitivity, and specificity, the Xpert MTB/RIF Ultra assay can be highly suitable for use in reference laboratories to confirm TB disease and effectively interrupt TB transmission.


Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Animais , Humanos , Tuberculose Pulmonar/microbiologia , Rifampina/farmacologia , Macaca fascicularis , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose/veterinária , Tuberculose/tratamento farmacológico , Escarro/microbiologia , Antibióticos Antituberculose/uso terapêutico , Farmacorresistência Bacteriana/genética
11.
BMC Microbiol ; 13: 292, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24330471

RESUMO

BACKGROUND: Functional characterization of genes in important pathogenic bacteria such as Mycobacterium tuberculosis is imperative. Rv2135c, which was originally annotated as conserved hypothetical, has been found to be associated with membrane protein fractions of H37Rv strain. The gene appears to contain histidine phosphatase motif common to both cofactor-dependent phosphoglycerate mutases and acid phosphatases in the histidine phosphatase superfamily. The functions of many of the members of this superfamily are annotated based only on similarity to known proteins using automatic annotation systems, which can be erroneous. In addition, the motif at the N-terminal of Rv2135c is 'RHA' unlike 'RHG' found in most members of histidine phosphatase superfamily. These necessitate the need for its experimental characterization. The crystal structure of Rv0489, another member of the histidine phosphatase superfamily in M. tuberculosis, has been previously reported. However, its biochemical characteristics remain unknown. In this study, Rv2135c and Rv0489 from M. tuberculosis were cloned and expressed in Escherichia coli with 6 histidine residues tagged at the C terminal. RESULTS: Characterization of the purified recombinant proteins revealed that Rv0489 possesses phosphoglycerate mutase activity while Rv2135c does not. However Rv2135c has an acid phosphatase activity with optimal pH of 5.8. Kinetic parameters of Rv2135c and Rv0489 are studied, confirming that Rv0489 is a cofactor dependent phosphoglycerate mutase of M. tuberculosis. Additional characterization showed that Rv2135c exists as a tetramer while Rv0489 as a dimer in solution. CONCLUSION: Most of the proteins orthologous to Rv2135c in other bacteria are annotated as phosphoglycerate mutases or hypothetical proteins. It is possible that they are actually phosphatases. Experimental characterization of a sufficiently large number of bacterial histidine phosphatases will increase the accuracy of the automatic annotation systems towards a better understanding of this important group of enzymes.


Assuntos
Histidina/metabolismo , Mycobacterium tuberculosis/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Mycobacterium tuberculosis/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
12.
PLoS One ; 18(7): e0288161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498897

RESUMO

Elephants are susceptible to Mycobacterium tuberculosis (M. tb) complex (MTBC) infections. Diagnosis of tuberculosis (TB) in elephants is difficult, and most approaches used for human TB diagnosis are not applicable. An interferon gamma release assay (IGRA) to diagnose TB in Asian elephants (Elephas maximus) using peripheral blood mononuclear cells (PBMCs) has been previously developed. Although the assay is shown to be valid in determining MTBC infection status, the laborious PBMC isolation process makes it difficult to use. In this study, we simplified the method by using whole blood cultures (WC) as the starting material. Using PBMC cultures for IGRA, the MTBC infection status of 15 elephants was first confirmed. Among these animals, one has been previously confirmed for M. tb infection by both TB culture and PCR and the other was confirmed for MTBC infection in this study by droplet digital PCR (ddPCR) method. WC for IGRA consisted of an unstimulated sample, a mitogen stimulated sample, and sample stimulated with recombinant M. tb antigens, ESAT6 and CFP10. Using WC for IGRA in the 15 enrolled elephants, the results showed that 7 out of 15 samples yielded MTBC infection positive status that were completely concordant with those from the results using PBMCs. To test this method, WC for IGRA were applied in another elephant cohort of 9 elephants. The results from this cohort revealed a perfect match between the results from PBMC and WC. Responses to ESAT6 or CFP10 by PBMC and WC were not completely concordant, arguing for the use of at least two M. tb antigens for stimulation. Given the ease of sample handling, smaller blood sample volumes and equivalent efficacy relative to the PBMC approach, using WC for IGRA provides a novel, rapid, and user-friendly TB diagnostic method for determining the MTBC infection in elephants.


Assuntos
Elefantes , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Testes de Liberação de Interferon-gama/veterinária , Testes de Liberação de Interferon-gama/métodos , Leucócitos Mononucleares , Hemocultura , Tuberculose/diagnóstico , Tuberculose/veterinária
13.
Artigo em Inglês | MEDLINE | ID: mdl-23082589

RESUMO

Control of tuberculosis depends both on an effective, accurate, and rapid diagnosis and an effective treatment and management. Antituberculous drugs have been used for more than 50 years and are likely ineffective against multidrug-resistant strains, leading to an urgent need for new drugs. Comparative genome analysis has indicated that Mycobacterium tuberculosis uvrC, a component of nucleotide excision repair (NER) system, is an essential gene without any human homolog. This raises the possibility to use this gene as a new drug target. This study investigated the essential role of uvrC on growth of M. tuberculosis in the presence of DNA damaging agents, UV light and hydrogen peroxide (generator of reactive oxygen species). Results revealed that the M. tuberculosis uvrC mutant was more sensitive to UV than the control strain (p < 0.01), but was not more sensitive to hydrogen peroxide. These results showed that uvrC is essential for M. tuberculosis DNA repair system, particularly in response to DNA damage caused by UV irradiation.


Assuntos
Dano ao DNA , Reparo do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/efeitos da radiação , Genes Bacterianos , Genes Essenciais , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Análise de Variância , Primers do DNA , Inativação Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo
14.
Asian Pac J Allergy Immunol ; 29(3): 240-51, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22053594

RESUMO

BACKGROUND: A previous study of IS6110 RFLP and spoligotyping of M. tuberculosis isolates from 152 Thai patients with tuberculous meningitis revealed a significantly higher percentage (57%) of the Beijing genotype as compared to isolates obtained from pulmonary tuberculosis. We postulated that the M. tuberculosis Beijing genotype is likely to be more virulent than others. OBJECTIVES: Ten M. tuberculosis cerebrospinal fluid (CSF) isolates from five RFLP groups, together with different characteristics of pks15/1, M. tuberculosis H37Rv and M. bovis BCG, were investigated for their virulence in vitro. METHODS: In this study, THP-1 cells were used as host cells to determine the intracellular growth and the induction of MMP9, VEGF, TNF-alpha and apoptosis. Determinations of the cytokine production and apoptosis were based on available commercial kits using ELISA techniques. RESULTS: No significant difference in intracellular multiplication was found between the M. tuberculosis CSF isolates. Three isolates, consisting of 2 Nonthaburi and 1 heterogeneous isolate, were found to stimulate high TNF-alpha and MMP-9 production during the early infection period.They were isolated from 3 different patients, 2 of whom died with initial stages II and III. This result suggested that there might be an association between TNF-alpha and MMP-9 production that could account for the specific virulent nature of Nonthaburi strains. VEGF production was determined and comparable levels were found in all isolates. No significant apoptosis was detected in M. tuberculosis CSF isolates. No significant differences suggesting that the 2 Beijing strains are more virulent than the others were observed. CONCLUSION: The predominance of the Beijing strains in cases of tuberculous meningitis (TBM) in Thai patients is not a result of their hypervirulence.


Assuntos
Apoptose/fisiologia , Metaloproteinase 9 da Matriz/biossíntese , Mycobacterium tuberculosis/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Linhagem Celular , Genótipo , Humanos , Hidrolases/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/patogenicidade , Tailândia , Tuberculose/líquido cefalorraquidiano , Tuberculose/imunologia , Tuberculose/microbiologia , Virulência
15.
Sci Rep ; 11(1): 3199, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542438

RESUMO

Tuberculosis is a global public health problem with emergence of multidrug-resistant infections. Previous epidemiological studies of tuberculosis in Thailand have identified a clonal outbreak multidrug-resistant strain of Mycobacterium tuberculosis in the Kanchanaburi province, designated "MKR superspreader", and this particular strain later was found to also spread to other regions. In this study, we elucidated its biology through RNA-Seq analyses and identified a set of genes involved in cholesterol degradation to be up-regulated in the MKR during the macrophage cell infection, but not in the H37Rv reference strain. We also found that the bacterium up-regulated genes associated with the ESX-1 secretion system during its intracellular growth phase, while the H37Rv did not. All results were confirmed by qRT-PCR. Moreover, we showed that compounds previously shown to inhibit the mycobacterial ESX-1 secretion system and cholesterol utilisation, and FDA-approved drugs known to interfere with the host cholesterol transportation were able to decrease the intracellular survival of the MKR when compared to the untreated control, while not that of the H37Rv. Altogether, our findings suggested that such pathways are important for the MKR's intracellular growth, and potentially could be targets for the discovery of new drugs against this emerging multidrug-resistant strain of M. tuberculosis.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Colesterol/metabolismo , Interações Hospedeiro-Patógeno/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sistemas de Secreção Tipo VII/genética , Antígenos de Bactérias/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Pequim/epidemiologia , Biotransformação , Células Clonais , Surtos de Doenças , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Redes e Vias Metabólicas/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Células THP-1 , Tailândia/epidemiologia , Transcrição Gênica , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/patologia , Sistemas de Secreção Tipo VII/efeitos dos fármacos , Sistemas de Secreção Tipo VII/metabolismo
16.
BMC Microbiol ; 10: 223, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20727143

RESUMO

BACKGROUND: Susceptibility testing of pyrazinamide (PZA) against Mycobacterium tuberculosis is difficult to perform because the acidity of culture medium that is required for drug activity also inhibits the growth of bacteria. In Thailand, very limited information has been generated on PZA resistance, particularly among multidrug-resistant tuberculosis (MDR-TB) isolated from Thailand. Only two studies on PZA susceptibility among Thai M. tuberculosis strains have been reported; one used a pyrazinamidase assay, and the other used the BACTEC 460 TB for PZA susceptibility testing. In this study, we determined the percentage of strains possessing pyrazinamide resistance among pan-susceptible M. tuberculosis and MDR-TB isolates by using the pyrazinamidase assay, BACTEC MGIT 960 PZA method and pncA sequencing, and assessed the correlation in the data generated using these methods. The type and frequency of mutations in pncA were also determined. RESULTS: Overall, 150 M. tuberculosis isolates, consisting of 50 susceptible and 100 MDR-TB isolates, were tested for PZA susceptibility by BACTEC MGIT 960 PZA, the pyrazinamidase assay and pncA sequencing. The study indicated PZA resistance in 6% and 49% of susceptible and MDR-TB isolates, respectively. In comparison to the BACTEC MGIT 960 PZA, the PZase assay showed 65.4% sensitivity and 100% specificity, whereas pncA sequencing showed 75% sensitivity and 89.8% specificity. Twenty-four mutation types were found in this study, with the most frequent mutation (16%) being His71Asp. Of these mutations, eight have not been previously described. The Ile31Ser and Ile31Thr mutations were found both in PZA susceptible and resistant isolates, suggesting that mutation of this codon might not play a role on PZA resistance. CONCLUSIONS: Our findings suggest that phenotypic susceptibility testing is still essential for the detection of PZA resistance, especially for MDR-TB isolates. Some mutations were not associated with resistance and could lead to misinterpretation of the genotypic methods. This information could be helpful for clinicians in managing tuberculosis patients and frequencies, and the types of pncA mutations should offer baseline information on PZA resistance.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Vigilância da População , Pirazinamida/farmacologia , Tuberculose/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Amidoidrolases/genética , Amidoidrolases/metabolismo , Antibacterianos/farmacologia , Criança , Pré-Escolar , Feminino , Hospitais , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mutação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Tailândia , Adulto Jovem
17.
Southeast Asian J Trop Med Public Health ; 41(3): 590-601, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20578547

RESUMO

Multiplex PCR (mPCR) was established for the simultaneous detection of clarithromycin (CLR) resistance and species identification of Mycobacterium avium complex (MAC). mPCR was tested on 218 MAC clinical isolates. CLR-resistance was detected by mPCR in 31 of 35 isolates identified by a microdilution method. Of the remaining 187 susceptible isolates identified by mPCR, 183 isolates had MIC < or = 8 microg/ml (susceptible), 3 with MIC of 16 (intermediate resistant) and 1 with MIC of > or = 32 microg/ml (resistant). Comparing with the PCR-restriction enzyme analysis, mPCR concordantly identified 185 isolates either as being M. avium or M. intracellulare, whereas one isolate was misidentified and 32 isolates could not be identified. Comparing with reference methods, the mPCR showed the sensitivity, specificity, positive predictive and negative predictive value of 89, 100, 100, and 98% for detection of CLR resistance; 92, 98, 99, and 78% for identification of M. avium; and 57, 100, 100, and 89% for identification of M. intracellulare, respectively.


Assuntos
Técnicas de Tipagem Bacteriana , Claritromicina/farmacologia , Farmacorresistência Bacteriana , Complexo Mycobacterium avium/classificação , Complexo Mycobacterium avium/efeitos dos fármacos , Reação em Cadeia da Polimerase/métodos , Humanos , Testes de Sensibilidade Microbiana , Valor Preditivo dos Testes , Sensibilidade e Especificidade
18.
Sci Rep ; 10(1): 16976, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046776

RESUMO

Mycobacterium tuberculosis (Mtb) is an insidious scourge that has afflicted millions of people worldwide. Although there are many rapid methods to detect it based on loop-mediated isothermal amplification (LAMP) and a lateral flow dipstick (LFD), this study made further improvements using a new set of primers to enhance LAMP performance and a novel DNA probe system to simplify detection and increase specificity. The new probe system eliminates the post-LAMP hybridization step typically required for LFD assays by allowing co-hybridization and amplification of target DNA in one reaction while preventing self-polymerization that could lead to false-positive results. The improved assay was named Probe-Triggered, One-Step, Simultaneous DNA Hybridization and LAMP Integrated with LFD (SH-LAMP-LFD). SH-LAMP-LFD was simpler to perform and more sensitive than previously reported LAMP-LFD and PCR methods by 100 and 1000 times, respectively. It could detect a single cell of Mtb. The absence of cross-reactivity with 23 non-TB bacteria, and accurate test results with all 104 blind clinical samples have highlighted its accuracy. Its robustness and portability make SH-LAMP-LFD suitable for users in both low and high resource settings.


Assuntos
DNA Bacteriano , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico/métodos , Tuberculose/diagnóstico , Tuberculose/microbiologia , Sondas de DNA , Humanos , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
19.
Sci Rep ; 10(1): 14551, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883961

RESUMO

Tuberculosis is highly contagious disease that can be transmitted between humans and animals. Asian elephants (Elephas maximus) in captivity live in close contact with humans in many Asian countries. In this study, we developed an interferon gamma release assay (IGRA) for elephant TB detection using antigens from the MTB complex (MTBC) and nontuberculous mycobacteria (NTM) as stimulating antigens (PPD, ESAT6, CFP10) to elicit a cell-mediated immune response (CMIR). The developed assay was applied to an elephant herd of more than 60 animals in Thailand, and the results were compared with those obtained through serological detection. IGRA has sufficient sensitivity for detecting elephant interferon gamma (eIFNγ) from specific antigen-stimulated PBMCs. Among 60 animals tested, 20 samples (33.3%) showed negative results for both MTBC and NTM infection. Eighteen samples (30%) showed positive responses against PPD from M. bovis and/or ESAT6 and CFP10, indicating MTBC infection. In contrast, only 15.6% showed seropositivity in a commercial serological test kit for elephant TB. The discrepancies between serological and CMIR highlight that the two methods may detect different stages of elephant TB. Therefore, employing both tests may enable them to complement each other in correctly identifying elephants that have been exposed to MTBC.


Assuntos
Testes de Liberação de Interferon-gama/métodos , Mycobacterium tuberculosis/patogenicidade , Tuberculose/diagnóstico , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Elefantes , Ensaio de Imunoadsorção Enzimática , Feminino , Imunidade Celular/fisiologia , Interferon gama/metabolismo , Leucócitos Mononucleares/metabolismo , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Micobactérias não Tuberculosas/imunologia , Micobactérias não Tuberculosas/metabolismo , Micobactérias não Tuberculosas/patogenicidade , Tuberculose/metabolismo
20.
J Pharm Biomed Anal ; 186: 113333, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32402994

RESUMO

Tuberculosis (TB) is one of the most contagious and lethal infectious diseases that affects more than 10 million individuals worldwide. A lack of rapid TB diagnosis is partly responsible for its alarming spread and prevalence in many regions. To address this problem, we report a novel integrated point-of-care platform to detect a TB-causative bacterium, Mycobacterium tuberculosis (Mtb). This leverages loop-mediated isothermal amplification (LAMP) for Mtb-DNA amplification and the screen-printed graphene electrode (SPGE) for label-free electrochemical analysis of DNA amplicons. When implemented on a portable potentiostat device developed in-house, the system (LAMP-EC) offers a rapid end-point qualitative analysis of specific DNA amplicons that will be displayed as a discrete positive/negative readout on the LCD screen. Under optimized conditions, LAMP-EC showed a comparable detection limit to the previously developed LAMP assay with a lateral flow readout at 1 pg total DNA or 40 Mtb genome equivalents. This highly specific technique detected the presence of TB in all 104 blinded sputum samples with a 100% accuracy. Our technique can also easily be clinically adopted due to its affordability (∼USD2.5/test), rapidity (<65 min turnaround time) and feasibility (lack of advanced instrumental requirement). This serves as a practical incentive, appealing to users in both high- and low-resource settings across the TB endemic regions and economic backgrounds.


Assuntos
Técnicas Eletroquímicas/métodos , Mycobacterium tuberculosis/isolamento & purificação , Sistemas Automatizados de Assistência Junto ao Leito , Tuberculose/diagnóstico , DNA Bacteriano/análise , Eletrodos , Grafite/química , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA