Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Proteins ; 92(9): 1097-1112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38666709

RESUMO

Fusarium oxysporum f.sp. lycopersici is a phytopathogen which causes vascular wilt disease in tomato plants. The survival tactics of both pathogens and hosts depend on intricate interactions between host plants and pathogenic microbes. Iron-binding proteins (IBPs) and copper-binding proteins (CBPs) play a crucial role in these interactions by participating in enzyme reactions, virulence, metabolism, and transport processes. We employed high-throughput computational tools at the sequence and structural levels to investigate the IBPs and CBPs of F. oxysporum. A total of 124 IBPs and 37 CBPs were identified in the proteome of Fusarium. The ranking of amino acids based on their affinity for binding with iron is Glu > His> Asp > Asn > Cys, and for copper is His > Asp > Cys respectively. The functional annotation, determination of subcellular localization, and Gene Ontology analysis of these putative IBPs and CBPs have unveiled their potential involvement in a diverse array of cellular and biological processes. Three iron-binding glycosyl hydrolase family proteins, along with four CBPs with carbohydrate-binding domains, have been identified as potential effector candidates. These proteins are distinct from the host Solanum lycopersicum proteome. Moreover, they are known to be located extracellularly and function as enzymes that degrade the host cell wall during pathogen-host interactions. The insights gained from this report on the role of metal ions in plant-pathogen interactions can help develop a better understanding of their fundamental biology and control vascular wilt disease in tomato plants.


Assuntos
Cobre , Proteínas Fúngicas , Fusarium , Ferro , Proteoma , Solanum lycopersicum , Fusarium/metabolismo , Fusarium/química , Proteoma/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/metabolismo , Ferro/metabolismo , Cobre/metabolismo , Cobre/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Doenças das Plantas/microbiologia , Ligação Proteica
2.
Metabolomics ; 20(4): 80, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066988

RESUMO

INTRODUCTION: The Cluster bean is an economically significant annual legume, widely known as guar. Plant productivity is frequently constrained by drought conditions. OBJECTIVE: In this work, we have identified the untargeted drought stress-responsive metabolites in mature leaves of cluster beans under drought and control condition. METHODS: To analyse the untargeted metabolites, gas chromatography-mass spectrometry (GC-MS) technique was used. Supervised partial least-squares discriminate analysis and heat map were used to identify the most significant metabolites for drought tolerance. RESULTS: The mature leaves of drought-treated C. tetragonoloba cv. 'HG-365' which is a drought-tolerant cultivar, showed various types of amino acids, fatty acids, sugar alcohols and sugars as the major classes of metabolites recognized by GC-MS metabolome analysis. Metabolite profiling of guar leaves showed 23 altered metabolites. Eight metabolites (proline, valine, D-pinitol, palmitic acid, dodecanoic acid, threonine, glucose, and glycerol monostearate) with VIP score greater than one were considered as biomarkers and three metabolite biomarkers (D-pinitol, valine, and glycerol monostearate) were found for the first time in guar under drought stress. In this work, four amino acids (alanine, valine, serine and aspartic acid) were also studied, which played a significant role in drought-tolerant pathway in guar. CONCLUSION: This study provides information on the first-ever GC-MS metabolic profiling of guar. This work gives in-depth details on guar's untargeted drought-responsive metabolites and biomarkers, which can plausibly be used for further identification of biochemical pathways, enzymes, and the location of various genes under drought stress.


Assuntos
Biomarcadores , Secas , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Folhas de Planta , Estresse Fisiológico , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Biomarcadores/metabolismo , Biomarcadores/análise , Folhas de Planta/metabolismo , Estresse Fisiológico/fisiologia , Metaboloma/fisiologia , Aminoácidos/metabolismo , Aminoácidos/análise , Fabaceae/metabolismo
3.
Microb Pathog ; 193: 106763, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925344

RESUMO

Increasing incidences of fungal infections and prevailing antifungal resistance in healthcare settings has given rise to an antifungal crisis on a global scale. The members of the genus Candida, owing to their ability to acquire sessile growth, are primarily associated with superficial to invasive fungal infections, including the implant-associated infections. The present study introduces a novel approach to combat the sessile/biofilm growth of Candida by fabricating nanofibers using a nanoencapsulation approach. This technique involves the synthesis of tyrosol (TYS) functionalized chitosan gold nanocomposite, which is then encapsulated into PVA/AG polymeric matrix using electrospinning. The FESEM, FTIR analysis of prepared TYS-AuNP@PVA/AG NF suggested the successful encapsulation of TYS into the nanofibers. Further, the sustained and long-term stability of TYS in the medium was confirmed by drug release and storage stability studies. The prepared nanomats can absorb the fluid, as evidenced by the swelling index of the nanofibers. The growth and biofilm inhibition, as well as the disintegration studies against Candida, showed 60-70 % biofilm disintegration when 10 mg of TYS-AuNP@PVA/AG NF was used, hence confirming its biological effectiveness. Subsequently, the nanofibers considerably reduced the hydrophobicity index and ergosterol content of the treated cells. Considering the challenges associated with the inhibition/disruption of fungal biofilm, the fabricated nanofibers prove their effectiveness against Candida biofilm. Therefore, nanocomposite-loaded nanofibers have emerged as potential materials that can control fungal colonization and could also promote healing.


Assuntos
Antifúngicos , Biofilmes , Candida , Ouro , Goma Arábica , Nanopartículas Metálicas , Nanofibras , Álcool Feniletílico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Ouro/química , Ouro/farmacologia , Nanofibras/química , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Álcool Feniletílico/química , Nanopartículas Metálicas/química , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Goma Arábica/química , Goma Arábica/farmacologia , Quitosana/química , Quitosana/farmacologia , Nanocompostos/química , Testes de Sensibilidade Microbiana , Álcool de Polivinil/química , Liberação Controlada de Fármacos , Prata/farmacologia , Prata/química , Ergosterol/química , Interações Hidrofóbicas e Hidrofílicas
4.
Inorg Chem ; 63(1): 714-729, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150362

RESUMO

Ligands derived from 2-(1-phenylhydrazinyl)pyridine and salicylaldehyde (HL1), 3-methoxysalicylaldehyde (HL2), 5-bromosalicylaldehyde (HL3), and 3,5-di-tert-butylsalicylaldehyde (HL4) react with [VIVO(acac)2] in MeOH followed by aerial oxidation to give [VVO2(L1)] (1), [VVO2(L2)] (2), [VVO2(L3)] (3), and [VVO2(L4)] (4). Complex [VIVO(acac)(L1)] (5) is also isolable from [VIVO(acac)2] and HL1 in dry MeOH. Structures of all complexes were confirmed by single-crystal X-ray and spectroscopic studies. They efficiently catalyze benzyl alcohol and its derivatives' oxidation in the presence of H2O2 to their corresponding aldehydes. Under optimized reaction conditions using 1 as a catalyst precursor, conversion of benzyl alcohol follows the order: 4 (93%) > 2 (90%) > 1 (86%) > 3 (84%) ≈ 5 (84%). These complexes were also evaluated for antifungal and antiproliferative activities. Complex 3 with MIC50 = 16 µg/mL, 4 with MIC50 = 12 µg/mL, and 5 with MIC50 = 16 µg/mL are efficient toward planktonic cells of Candida albicans and Candida tropicalis. On Michigan cancer foundation-7 (MCF-7) cells, they show comparable cytotoxic effects and exhibit IC50 in the 27.3-33.5 µg/mL range, and among these, 4 exhibits the highest cytotoxicity. A similar study on human embryonic kidney cells (HEK293) confirms their less toxicity at lower concentrations (4 to 16 µg/mL) compared to MCF-7.


Assuntos
Antifúngicos , Vanádio , Humanos , Vanádio/química , Antifúngicos/farmacologia , Peróxido de Hidrogênio/química , Células HEK293 , Álcoois Benzílicos , Ligantes
5.
J Chromatogr Sci ; 62(7): 611-617, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38745428

RESUMO

In the present work, new chiral stationary phase high-performance liquid chromatography (CSP-HPLC) method was established and validated for the quantification of pomalidomide (PMD) enantiomers in human plasma. The chromatographic enantiomeric separation was achieved on a Daicel-CSP, Chiralpack IA 4.6 × 250 mm, 5 µm; because of its advantages of high degree of retention, high resolution capacity, better reproducibility, ability to produce lower back pressure and low degree of tailing. The mobile phase was maintained as methanol: glacial acetic acid (499.50 ml:50 µL). Ultraviolet wavelength for detection was 220 nm. PMD enantiomer-I and enantiomer-II were separated at 8.83 and 15.34 min, respectively. Limit of detection and limit of quantification for each enantiomer and the calibration curve of standard PMD was linear in range between 10-5,000 ng mL-1. The method was validated according to The International Council for Harmonisation of Technical Requirements of Pharmaceuticals for Human Use (ICH(Q2R1)) specific guidelines. We found no interference peak with PMD chromatogram obtained. This is a simple, reliable and specific method for detection and quantification of enantiomer of PMD in human plasma sample.


Assuntos
Limite de Detecção , Talidomida , Humanos , Talidomida/sangue , Talidomida/análogos & derivados , Talidomida/química , Estereoisomerismo , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA