RESUMO
Human menopause is associated with hypertrophy and increased gene expression of neurokinin (NKB) neurons in the infundibular (arcuate) nucleus of the hypothalamus. We have hypothesized that these changes are secondary to gonadal failure. In the present study, we determined that orchidectomy resulted in an increase in the mean profile area and the number of neurons expressing NKB mRNA in the rat arcuate nucleus. No changes were seen when orchidectomy was combined with testosterone or estradiol replacement. These findings support our hypothesis and demonstrate that gonadal steroids modulate NKB neurons in the arcuate nucleus of adult male rats.
Assuntos
Antineoplásicos Hormonais/farmacologia , Núcleo Arqueado do Hipotálamo/fisiologia , Estrogênios/farmacologia , Neurocinina B/genética , Testosterona/farmacologia , Fatores Etários , Animais , Núcleo Arqueado do Hipotálamo/química , Química Encefálica/efeitos dos fármacos , Química Encefálica/fisiologia , Galanina/genética , Expressão Gênica/efeitos dos fármacos , Masculino , Orquiectomia , RNA Mensageiro/análise , Ratos , Ratos Sprague-DawleyRESUMO
Cellular laminae within the tonotopically organized ventral division of the medial geniculate body (MGV) of the cat have been proposed as the anatomical substrate for physiologically defined isofrequency contours. In most species, the laminae are not visible with routine Nissl stains, but are defined by the dendritic fields of principal cells and the terminal arbors of afferents arising from the inferior colliculus. In the present study, we have used the rabbit to directly examine the relationship between the laminar and tonotopic organization of the MGV. Best frequency maps of the MGV in anesthetized adult New Zealand white rabbits were generated from cluster responses recorded at 30-100 microm intervals to randomly presented tone bursts. Parallel vertical penetrations, roughly perpendicular to the laminae, revealed a low-to-high frequency gradient within the MGV. Non-laminated regions of the ventral division, generally found at the rostral or caudal poles, did not demonstrate a systematic frequency gradient. In contrast to a predicted smooth gradient, best frequencies shifted in discrete steps across the axis of the laminae. A similar step-wise frequency gradient has been shown in the central nucleus of the inferior colliculus of the cat. It is proposed that the central laminated core of the MGV represents an efficient architecture for creating narrow frequency filters involved in fine spectral analysis.
Assuntos
Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Estimulação Acústica , Animais , Vias Auditivas/citologia , Vias Auditivas/fisiologia , Percepção Auditiva , Gatos , Eletrofisiologia , CoelhosRESUMO
The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of approximately 100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6-1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/mum penetrates into the interior of the cell and every organelle.