Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Pathol ; 48(4): 570-585, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32319353

RESUMO

Administration of human protein-based drugs to animals often leads to formation of antidrug antibodies (ADAs) that may form circulating immune complexes (CICs) with the dosed protein. Circulating immune complexes can activate and bind complement (cCICs), and if large amount of CICs or cCICs is formed, the clearance mechanism potentially becomes saturated, which can lead to immune complex (IC) deposition and inflammation. To obtain a better understanding of the underlying factors, including the relationship between different dose regimes on IC formation and deposition and identification of possible biomarkers of IC deposition and IC-related pathological changes in kidneys, BALB/c and C57BL/6J mice were administered with human anti-tumor necrosis factor α (aTNFα, adalimumab) or a humanized anti-TNP (aTNP) antibody for 13 weeks. Particularly, ADA, CIC, cCIC formation, IC deposition, and glomerulonephritis were observed in C57BL/6J administered with aTNFα, whereas the immunologic response was minor in BALB/c mice administered with aTNFα and in BALB/c and C57BL/6J mice administered aTNP. Changing dose levels or increasing dosing frequency of aTNFα on top of an already-established CIC and cCIC response did not lead to substantial changes in CIC, cCIC formation, or IC deposition. Finally, no association between the presence of CICs or cCIC in plasma and glomerular IC deposition and/or glomerulonephritis was observed.


Assuntos
Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Animais , Anticorpos Monoclonais , Complexo Antígeno-Anticorpo , Biomarcadores/metabolismo , Proteínas do Sistema Complemento , Glomerulonefrite , Humanos , Imunoglobulina G , Rim , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
2.
Toxicol Pathol ; 42(4): 725-64, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24705884

RESUMO

Vascular inflammation, infusion reactions, glomerulopathies, and other potentially adverse effects may be observed in laboratory animals, including monkeys, on toxicity studies of therapeutic monoclonal antibodies and recombinant human protein drugs. Histopathologic and immunohistochemical (IHC) evaluation suggests these effects may be mediated by deposition of immune complexes (ICs) containing the drug, endogenous immunoglobulin, and/or complement components in the affected tissues. ICs may be observed in glomerulus, blood vessels, synovium, lung, liver, skin, eye, choroid plexus, or other tissues or bound to neutrophils, monocytes/macrophages, or platelets. IC deposition may activate complement, kinin, and/or coagulation/fibrinolytic pathways and result in a systemic proinflammatory response. IC clearance is biphasic in humans and monkeys (first from plasma to liver and/or spleen, second from liver or spleen). IC deposition/clearance is affected by IC composition, immunomodulation, and/or complement activation. Case studies are presented from toxicity study monkeys or rats and indicate IHC-IC deposition patterns similar to those predicted by experimental studies of IC-mediated reactions to heterologous protein administration to monkeys and other species. The IHC-staining patterns are consistent with findings associated with generalized and localized IC-associated pathology in humans. However, manifestations of immunogenicity in preclinical species are generally not considered predictive to humans.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Doenças Vasculares/patologia , Animais , Anticorpos Monoclonais/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Complemento C3/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Haplorrinos , Humanos , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Imuno-Histoquímica , Masculino , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Ratos , Doenças Vasculares/induzido quimicamente
3.
PLoS One ; 15(7): e0235546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32609743

RESUMO

Resistin and resistin-like molecules are pleiotropic cytokines that are involved in inflammatory diseases. Our previous work suggested that resistin has the potential to be used as a biomarker and therapeutic target for human pulmonary arterial hypertension. However, data are limited on the distribution of resistin in healthy human organs. In this study, we used our newly developed anti-human resistin (hResistin) antibody to immunohistochemically detect the expression, localization, and intracellular/extracellular compartmentalization of hResistin in a full human tissue panel from healthy individuals. The potential cross reactivity of this monoclonal anti-hResistin IgG1 with normal human tissues also was verified. Results showed that hResistin is broadly distributed and principally localized in the cytoplasmic granules of macrophages scattered in the interstitium of most human tissues. Bone marrow hematopoietic precursor cells also exhibited hResistin signals in their cytoplasmic granules. Additionally, hResistin labeling was observed in the cytoplasm of nervous system cells. Notably, the cytokine activity of hResistin was illustrated by positively stained extracellular material in most human tissues. These data indicate that our generated antibody binds to the secreted hResistin and support its potential use for immunotherapy to reduce circulating hResistin levels in human disease. Our findings comprehensively document the basal expression patterns of hResistin protein in normal human tissues, suggest a critical role of this cytokine in normal and pathophysiologic inflammatory processes, and offer key insights for using our antibody in future pharmacokinetic studies and immunotherapeutic strategies.


Assuntos
Anticorpos Monoclonais/imunologia , Regulação da Expressão Gênica , Resistina/imunologia , Resistina/metabolismo , Espaço Extracelular/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Espaço Intracelular/metabolismo , Especificidade de Órgãos , Transporte Proteico
4.
J Immunotoxicol ; 16(1): 191-200, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31684787

RESUMO

In preclinical toxicity studies, species-foreign proteins administered to animals frequently leads to formation of anti-drug antibodies (ADA). Such antibodies may form circulating immune complexes (CIC) with the administered protein. These CIC can activate the classical complement pathway, thereby forming complement-bound CIC (cCIC); if large of amounts of CIC or cCIC is formed, the clearance mechanism may become saturated which potentially leads to vascular immune complex (IC) deposition and inflammation. Limited information is available on the effect of different treatment related procedures as well as biomarkers of IC-related vascular disease. In order to explore the effect of different dose regimens on IC formation and deposition, and identification of possible biomarkers of IC deposition and IC-related pathological changes, C57BL/6J and BALB/c mice were dosed subcutaneously twice weekly with bovine serum albumin (BSA) for 13 weeks without adjuvant. After 6 and 13 weeks, CIC and cCIC were detected in plasma; after 13 weeks, IC deposition was detected in kidney glomeruli. In particular immunohistochemistry double-staining was shown to be useful for detection of IC deposition. Increasing dosing frequency or changing BSA dose level on top of an already established CIC and cCIC response did not cause changes in IC deposition, but CIC and cCIC concentrations tended to decrease with increased dose level, and increased cCIC formation was observed after more frequent dosing. The presence of CIC in plasma was associated with glomerular IC deposits in the dose regimen study; however, the use of CIC or cCIC as potential biomarkers for IC deposition and IC-related pathological changes, needs to be explored further.


Assuntos
Complexo Antígeno-Anticorpo/análise , Glomerulonefrite/imunologia , Soroalbumina Bovina/toxicidade , Vasculite Sistêmica/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Biomarcadores/análise , Via Clássica do Complemento/efeitos dos fármacos , Via Clássica do Complemento/imunologia , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Glomerulonefrite/sangue , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/diagnóstico , Humanos , Imuno-Histoquímica , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Masculino , Camundongos , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/imunologia , Vasculite Sistêmica/sangue , Vasculite Sistêmica/induzido quimicamente , Vasculite Sistêmica/diagnóstico , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA