Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 618(7964): 333-341, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165194

RESUMO

Metastatic cancer remains an almost inevitably lethal disease1-3. A better understanding of disease progression and response to therapies therefore remains of utmost importance. Here we characterize the genomic differences between early-stage untreated primary tumours and late-stage treated metastatic tumours using a harmonized pan-cancer analysis (or reanalysis) of two unpaired primary4 and metastatic5 cohorts of 7,108 whole-genome-sequenced tumours. Metastatic tumours in general have a lower intratumour heterogeneity and a conserved karyotype, displaying only a modest increase in mutations, although frequencies of structural variants are elevated overall. Furthermore, highly variable tumour-specific contributions of mutational footprints of endogenous (for example, SBS1 and APOBEC) and exogenous mutational processes (for example, platinum treatment) are present. The majority of cancer types had either moderate genomic differences (for example, lung adenocarcinoma) or highly consistent genomic portraits (for example, ovarian serous carcinoma) when comparing early-stage and late-stage disease. Breast, prostate, thyroid and kidney renal clear cell carcinomas and pancreatic neuroendocrine tumours are clear exceptions to the rule, displaying an extensive transformation of their genomic landscape in advanced stages. Exposure to treatment further scars the tumour genome and introduces an evolutionary bottleneck that selects for known therapy-resistant drivers in approximately half of treated patients. Our data showcase the potential of pan-cancer whole-genome analysis to identify distinctive features of late-stage tumours and provide a valuable resource to further investigate the biological basis of cancer and resistance to therapies.


Assuntos
Genoma Humano , Genômica , Metástase Neoplásica , Neoplasias , Feminino , Humanos , Masculino , Progressão da Doença , Mutação , Metástase Neoplásica/genética , Neoplasias/genética , Genoma Humano/genética , Estudos de Coortes , Cariotipagem , Desaminases APOBEC/metabolismo
2.
Nature ; 575(7781): 210-216, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31645765

RESUMO

Metastatic cancer is a major cause of death and is associated with poor treatment efficacy. A better understanding of the characteristics of late-stage cancer is required to help adapt personalized treatments, reduce overtreatment and improve outcomes. Here we describe the largest, to our knowledge, pan-cancer study of metastatic solid tumour genomes, including whole-genome sequencing data for 2,520 pairs of tumour and normal tissue, analysed at median depths of 106× and 38×, respectively, and surveying more than 70 million somatic variants. The characteristic mutations of metastatic lesions varied widely, with mutations that reflect those of the primary tumour types, and with high rates of whole-genome duplication events (56%). Individual metastatic lesions were relatively homogeneous, with the vast majority (96%) of driver mutations being clonal and up to 80% of tumour-suppressor genes being inactivated bi-allelically by different mutational mechanisms. Although metastatic tumour genomes showed similar mutational landscape and driver genes to primary tumours, we find characteristics that could contribute to responsiveness to therapy or resistance in individual patients. We implement an approach for the review of clinically relevant associations and their potential for actionability. For 62% of patients, we identify genetic variants that may be used to stratify patients towards therapies that either have been approved or are in clinical trials. This demonstrates the importance of comprehensive genomic tumour profiling for precision medicine in cancer.


Assuntos
Mutação , Metástase Neoplásica/genética , Neoplasias/genética , Neoplasias/patologia , Medicina de Precisão , Sequenciamento Completo do Genoma , Células Clonais/metabolismo , Células Clonais/patologia , Variações do Número de Cópias de DNA , Feminino , Humanos , Mutação INDEL , Disseminação de Informação , Masculino
3.
Bioinformatics ; 37(19): 3115-3119, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33973999

RESUMO

MOTIVATION: Integration of viruses into infected host cell DNA can cause DNA damage and disrupt genes. Recent cost reductions and growth of whole genome sequencing has produced a wealth of data in which viral presence and integration detection is possible. While key research and clinically relevant insights can be uncovered, existing software has not achieved widespread adoption, limited in part due to high computational costs, the inability to detect a wide range of viruses, as well as precision and sensitivity. RESULTS: Here, we describe VIRUSBreakend, a high-speed tool that identifies viral DNA presence and genomic integration. It utilizes single breakends, breakpoints in which only one side can be unambiguously placed, in a novel virus-centric variant calling and assembly approach to identify viral integrations with high sensitivity and a near-zero false discovery rate. VIRUSBreakend detects viral integrations anywhere in the host genome including regions such as centromeres and telomeres unable to be called by existing tools. Applying VIRUSBreakend to a large metastatic cancer cohort, we demonstrate that it can reliably detect clinically relevant viral presence and integration including HPV, HBV, MCPyV, EBV and HHV-8. AVAILABILITY AND IMPLEMENTATION: VIRUSBreakend is part of the Genomic Rearrangement IDentification Software Suite (GRIDSS). It is available under a GPLv3 license from https://github.com/PapenfussLab/VIRUSBreakend. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

4.
Nat Genet ; 55(5): 820-831, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37165135

RESUMO

Studies have characterized the immune escape landscape across primary tumors. However, whether late-stage metastatic tumors present differences in genetic immune escape (GIE) prevalence and dynamics remains unclear. We performed a pan-cancer characterization of GIE prevalence across six immune escape pathways in 6,319 uniformly processed tumor samples. To address the complexity of the HLA-I locus in the germline and in tumors, we developed LILAC, an open-source integrative framework. One in four tumors harbors GIE alterations, with high mechanistic and frequency variability across cancer types. GIE prevalence is generally consistent between primary and metastatic tumors. We reveal that GIE alterations are selected for in tumor evolution and focal loss of heterozygosity of HLA-I tends to eliminate the HLA allele, presenting the largest neoepitope repertoire. Finally, high mutational burden tumors showed a tendency toward focal loss of heterozygosity of HLA-I as the immune evasion mechanism, whereas, in hypermutated tumors, other immune evasion strategies prevail.


Assuntos
Segunda Neoplasia Primária , Humanos , Mutação
5.
Science ; 379(6629): 253-260, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36656928

RESUMO

Cancer genetics has to date focused on epithelial malignancies, identifying multiple histotype-specific pathways underlying cancer susceptibility. Sarcomas are rare malignancies predominantly derived from embryonic mesoderm. To identify pathways specific to mesenchymal cancers, we performed whole-genome germline sequencing on 1644 sporadic cases and 3205 matched healthy elderly controls. Using an extreme phenotype design, a combined rare-variant burden and ontologic analysis identified two sarcoma-specific pathways involved in mitotic and telomere functions. Variants in centrosome genes are linked to malignant peripheral nerve sheath and gastrointestinal stromal tumors, whereas heritable defects in the shelterin complex link susceptibility to sarcoma, melanoma, and thyroid cancers. These studies indicate a specific role for heritable defects in mitotic and telomere biology in risk of sarcomas.


Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Mitose , Sarcoma , Telômero , Humanos , Variação Genética , Células Germinativas , Melanoma/genética , Mitose/genética , Sarcoma/genética , Complexo Shelterina/genética , Telômero/genética
6.
Sci Rep ; 12(1): 10081, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710704

RESUMO

Bladder cancer has a high recurrence rate and low survival of advanced stage patients. Few genetic drivers of bladder cancer have thus far been identified. We performed in-depth structural variant analysis on whole-genome sequencing data of 206 metastasized urinary tract cancers. In ~ 10% of the patients, we identified recurrent in-frame deletions of exons 8 and 9 in the aryl hydrocarbon receptor gene (AHRΔe8-9), which codes for a ligand-activated transcription factor. Pan-cancer analyses show that AHRΔe8-9 is highly specific to urinary tract cancer and mutually exclusive with other bladder cancer drivers. The ligand-binding domain of the AHRΔe8-9 protein is disrupted and we show that this results in ligand-independent AHR-pathway activation. In bladder organoids, AHRΔe8-9 induces a transformed phenotype that is characterized by upregulation of AHR target genes, downregulation of differentiation markers and upregulation of genes associated with stemness and urothelial cancer. Furthermore, AHRΔe8-9 expression results in anchorage independent growth of bladder organoids, indicating tumorigenic potential. DNA-binding deficient AHRΔe8-9 fails to induce transformation, suggesting a role for AHR target genes in the acquisition of the oncogenic phenotype. In conclusion, we show that AHRΔe8-9 is a novel driver of urinary tract cancer and that the AHR pathway could be an interesting therapeutic target.


Assuntos
Receptores de Hidrocarboneto Arílico , Neoplasias da Bexiga Urinária , Éxons/genética , Humanos , Ligantes , Mutação , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias da Bexiga Urinária/genética
7.
Cell Genom ; 2(4): 100112, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36776527

RESUMO

Complex somatic genomic rearrangements and copy number alterations are hallmarks of nearly all cancers. We have developed an algorithm, LINX, to aid interpretation of structural variant and copy number data derived from short-read, whole-genome sequencing. LINX classifies raw structural variant calls into distinct events and predicts their effect on the local structure of the derivative chromosome and the functional impact on affected genes. Visualizations facilitate further investigation of complex rearrangements. LINX allows insights into a diverse range of structural variation events and can reliably detect pathogenic rearrangements, including gene fusions, immunoglobulin enhancer rearrangements, intragenic deletions, and duplications. Uniquely, LINX also predicts chained fusions that we demonstrate account for 13% of clinically relevant oncogenic fusions. LINX also reports a class of inactivation events that we term homozygous disruptions that may be a driver mutation in up to 9% of tumors and may frequently affect PTEN, TP53, and RB1.

8.
Cell Genom ; 2(6): 100139, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36778136

RESUMO

Accurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem. This is in part due to the lack of high-quality, gold-standard datasets that enable the benchmarking of experimental approaches and bioinformatic analysis pipelines. Here, we performed somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines using four different sequencing technologies. Based on the evidence from multiple technologies combined with extensive experimental validation, we compiled a comprehensive set of carefully curated and validated somatic SVs, comprising all SV types. We demonstrate the utility of this resource by determining the SV detection performance as a function of tumor purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics projects. The truth somatic SV dataset as well as the underlying raw multi-platform sequencing data are freely available and are an important resource for community somatic benchmarking efforts.

9.
Genome Biol ; 22(1): 202, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253237

RESUMO

GRIDSS2 is the first structural variant caller to explicitly report single breakends-breakpoints in which only one side can be unambiguously determined. By treating single breakends as a fundamental genomic rearrangement signal on par with breakpoints, GRIDSS2 can explain 47% of somatic centromere copy number changes using single breakends to non-centromere sequence. On a cohort of 3782 deeply sequenced metastatic cancers, GRIDSS2 achieves an unprecedented 3.1% false negative rate and 3.3% false discovery rate and identifies a novel 32-100 bp duplication signature. GRIDSS2 simplifies complex rearrangement interpretation through phasing of structural variants with 16% of somatic calls phasable using paired-end sequencing.


Assuntos
Pontos de Quebra do Cromossomo , Variações do Número de Cópias de DNA , Neoplasias/genética , Software , Mapeamento de Sequências Contíguas , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Genoma Humano , Genômica , Humanos , Metástase Neoplásica , Neoplasias/patologia
10.
Nat Med ; 26(11): 1742-1753, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020650

RESUMO

The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberration, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing variants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients.


Assuntos
Epigenoma/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Transcriptoma/genética , Adolescente , Criança , Pré-Escolar , Metilação de DNA/genética , Feminino , Humanos , Lactente , Masculino , Mutação/genética , Neoplasias/classificação , Neoplasias/patologia , Pediatria , Medicina de Precisão , Fatores de Risco , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
11.
Nat Commun ; 10(1): 4571, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594944

RESUMO

5-Fluorouracil (5-FU) is a chemotherapeutic drug commonly used for the treatment of solid cancers. It is proposed that 5-FU interferes with nucleotide synthesis and incorporates into DNA, which may have a mutational impact on both surviving tumor and healthy cells. Here, we treat intestinal organoids with 5-FU and find a highly characteristic mutational pattern that is dominated by T>G substitutions in a CTT context. Tumor whole genome sequencing data confirms that this signature is also identified in vivo in colorectal and breast cancer patients who have received 5-FU treatment. Taken together, our results demonstrate that 5-FU is mutagenic and may drive tumor evolution and increase the risk of secondary malignancies. Furthermore, the identified signature shows a strong resemblance to COSMIC signature 17, the hallmark signature of treatment-naive esophageal and gastric tumors, which indicates that distinct endogenous and exogenous triggers can converge onto highly similar mutational signatures.


Assuntos
Carcinogênese/efeitos dos fármacos , Fluoruracila/efeitos adversos , Neoplasias/genética , Mutação Puntual/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Adulto , Idade de Início , Idoso , Biópsia , Carcinogênese/genética , Técnicas de Cultura de Células , Linhagem Celular , Ensaios Clínicos como Assunto , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Intestinos/citologia , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Taxa de Mutação , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Organoides , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Células-Tronco , Transcriptoma/genética , Sequenciamento Completo do Genoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA