RESUMO
The endosomal protein-sorting machineries play vital roles in diverse physiologically important cellular processes. Much of the core membrane-sorting apparatus is conserved in evolution, such as retromer, which is involved in the recycling of a diverse set of cargoes via the retrograde trafficking route. Here, in an RNAi-based loss-of-function study, we identified that suppression of SNX12 leads to a severe blockage in CIM6PR (also known as IGF2R) transport and alters the morphology of the endocytic compartments. We demonstrate that SNX12 is involved in the early phase of CIM6PR transport, and mediates receptor recycling upstream of the other well-established SNX components of retromer. Ultra-structural analysis revealed that SNX12 resides on tubulo-vesicular structures, despite it lacking a BAR domain. Furthermore, we illustrate that SNX12 plays a key role in intraluminal vesicle formation and in the maturation of a subpopulation of early endosomes into late endosomes, thereby regulating selective endocytic transport of cargo for degradation. This study therefore provides evidence for the existence of early endosomal subpopulations that have differential roles in the sorting of the cargoes along endocytic degradative pathways.
Assuntos
Endocitose/genética , Endossomos/metabolismo , Nexinas de Classificação/fisiologia , Transporte Biológico/genética , LDL-Colesterol/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Humanos , Redes e Vias Metabólicas/genética , Transporte Proteico/genética , Proteólise , Estabilidade de RNA , Nexinas de Classificação/genética , Vesículas Transportadoras/metabolismoRESUMO
Retromer, a peripheral membrane protein complex, plays an instrumental role in host of cellular processes by its ability to recycle receptors from endosomes to the trans-Golgi network. It consists of two distinct sub-complexes, a membrane recognizing, sorting nexins (SNX) complex and a cargo recognition, vacuolar protein sorting (Vps) complex. Small GTPase, Rab7 is known to recruit retromer on endosomal membrane via interactions with the Vps sub-complex. The molecular mechanism underlying the recruitment process including the role of individual Vps proteins is yet to be deciphered. In this study, we developed a FRET-based assay in HeLa cells that demonstrated the interaction of Rab7 with Vps35 and Vps26 in vivo. Furthermore, we showed that Rab7 recruits retromer to late endosomes via direct interactions with N-terminal conserved regions in Vps35. However, the single point mutation, which disrupts the interaction between Vps35 and Vps26, perturbed the Rab7-mediated recruitment of retromer in HeLa cells. Using biophysical measurements, we demonstrate that the association of Vps26 with Vps35 resulted in high affinity binding between the Vps sub-complex and the activated Rab7 suggesting for a possible allosteric role of Vps26. Thus, this study provides molecular insights into the essential role of Vps26 and Vps35 in Rab7-mediated recruitment of the core retromer complex.
Assuntos
Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo , Células HeLa , Humanos , proteínas de unión al GTP Rab7RESUMO
We describe a straightforward strategy for the synthesis of strongly fluorescent pyridoindoles by Pd-catalyzed oxidative annulations of internal alkynes with C-3 functionalized indoles through CH/NH bond activation in a one-pot tandem process. Mechanistic investigations reveal the preferential activation of NH indole followed by CH activation during the cyclization process. Photophysical properties of pyridoindoles exhibited the highest fluorescence quantum yield of nearly 80 %, with emission color varying from blue to green to orange depending on the substructures. Quantum mechanical calculations provide insights into the observed photophysical properties. The strong fluorescence of the pyrido[1,2-a]indole derivative has been employed in subcellular imaging, which demonstrates its localization in the cell nucleus.
Assuntos
Indóis/química , Indóis/síntese química , Piridinas/química , Piridinas/síntese química , Catálise , Ciclização , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Estrutura Molecular , Oxirredução , Processos FotoquímicosRESUMO
Sorting nexins (SNX) are a family of proteins containing the Phox homology domain, which shows a preferential endo-membrane association and regulates cargo sorting processes. Here, we established that SNX32, an SNX-BAR (Bin/Amphiphysin/Rvs) sub-family member associates with SNX4 via its BAR domain and the residues A226, Q259, E256, R366 of SNX32, and Y258, S448 of SNX4 that lie at the interface of these two SNX proteins mediate this association. SNX32, via its PX domain, interacts with the transferrin receptor (TfR) and Cation-Independent Mannose-6-Phosphate Receptor (CIMPR), and the conserved F131 in its PX domain is important in stabilizing these interactions. Silencing of SNX32 leads to a defect in intracellular trafficking of TfR and CIMPR. Further, using SILAC-based differential proteomics of the wild-type and the mutant SNX32, impaired in cargo binding, we identified Basigin (BSG), an immunoglobulin superfamily member, as a potential interactor of SNX32 in SHSY5Y cells. We then demonstrated that SNX32 binds to BSG through its PX domain and facilitates its trafficking to the cell surface. In neuroglial cell lines, silencing of SNX32 leads to defects in neuronal differentiation. Moreover, abrogation in lactate transport in the SNX32-depleted cells led us to propose that SNX32 may contribute to maintaining the neuroglial coordination via its role in BSG trafficking and the associated monocarboxylate transporter activity. Taken together, our study showed that SNX32 mediates the trafficking of specific cargo molecules along distinct pathways.
Assuntos
Endossomos , Crescimento Neuronal , Endossomos/metabolismo , Transporte Proteico , Membrana Celular/metabolismo , Nexinas de Classificação/metabolismoRESUMO
The mechanistic target of rapamycin complex 1 (mTORC1) is part of the amino acid sensing machinery that becomes activated on the endolysosomal surface in response to nutrient cues. Branched actin generated by WASH and Arp2/3 complexes defines endolysosomal microdomains. Here, we find mTORC1 components in close proximity to endolysosomal actin microdomains. We investigated for interactors of the mTORC1 lysosomal tether, RAGC, by proteomics and identified multiple actin filament capping proteins and their modulators. Perturbation of RAGC function affected the size of endolysosomal actin, consistent with a regulation of actin filament capping by RAGC. Reciprocally, the pharmacological inhibition of actin polymerization or alteration of endolysosomal actin obtained upon silencing of WASH or Arp2/3 complexes impaired mTORC1 activity. Mechanistically, we show that actin is required for proper association of RAGC and mTOR with endolysosomes. This study reveals an unprecedented interplay between actin and mTORC1 signaling on the endolysosomal system.
Assuntos
Actinas , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina , Citoesqueleto de Actina , LisossomosRESUMO
The endosomal recycling pathway plays a crucial role in diverse physiologically important biological processes such as cell-to-cell signaling, nutrient uptake, immune response, and autophagy. A selective subset of these recycling cargoes, mostly transmembrane proteins, is retrieved from endosomes to the trans-Golgi network (TGN) by a retrograde transport process. Endosome-to-TGN retrograde trafficking is crucial for maintaining cellular homeostasis and signaling by preventing proteins and lipids from degradation in the lysosome. Many of the membrane sorting machinery, such as the retromer complex and sorting nexins (SNXs) are involved in endosomal retrieval and recycling of various transmembrane proteins. Recent technological advances in the resolution of light microscopy and unbiased analytical approaches in quantitative image analysis enable us to explore and understand the regulation of membrane trafficking pathways in greater detail. In this chapter, we describe quantitative imaging-based methods for analyzing the roles of proteins involved in the retrograde trafficking in retromer dependent or independent fashion, using cation-independent mannose-6-phosphate receptor (CIM6PR) as an example.