RESUMO
Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)+CD4+CD25+ regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels. As privileged regulators at the interface between neuroendocrine and immune systems, the role of Treg cells in maintaining metabolic homeostasis makes these cells promising targets of therapeutic strategies aimed at restoring organismal homeostasis not only in autoimmune but also metabolic disorders.
Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2 , Imunoterapia , HomeostaseRESUMO
Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.
Assuntos
Sistema y+ de Transporte de Aminoácidos/imunologia , Proliferação de Células/fisiologia , Linfócitos T Reguladores/imunologia , Adulto , Autoimunidade/imunologia , Células Cultivadas , Feminino , Homeostase/imunologia , Humanos , Tolerância Imunológica/imunologia , Masculino , Esclerose Múltipla Recidivante-Remitente/imunologia , Fator 2 Relacionado a NF-E2/imunologiaRESUMO
Human regulatory T cells (T(reg) cells) that develop from conventional T cells (T(conv) cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced T(reg) cells (iT(reg) cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iT(reg) cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2-related suppressive activity of iT(reg) cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of T(reg) cells in health and in autoimmunity.
Assuntos
Fatores de Transcrição Forkhead/genética , Glicólise/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Adulto , Processamento Alternativo , Autoimunidade , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos T CD4-Positivos/classificação , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Éxons , Ácidos Graxos/metabolismo , Feminino , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Silenciamento de Genes , Variação Genética , Humanos , Técnicas In Vitro , Masculino , Metaboloma , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Oxirredução , Fosfopiruvato Hidratase/antagonistas & inibidores , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Reguladores/classificação , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Adulto JovemRESUMO
Immunometabolism has been demonstrated to control immune tolerance and the pathogenic events leading to autoimmunity. Compelling experimental evidence also suggests that intracellular metabolic programs influence differentiation, phenotype, proliferation, and effector functions of anti-inflammatory CD4+CD25+Foxp3+ regulatory T (Treg) cells. Indeed, alterations in intracellular metabolism associate with quantitative and qualitative impairments of Treg cells in several pathological conditions. In this review, we summarize the most recent advances linking how metabolic pathways control Treg cell homeostasis and their alterations occurring in autoimmunity. Also, we analyze how metabolic manipulations could be employed to restore Treg cell frequency and function with the aim to create novel therapeutic opportunities to halt immune-mediated disorders.
Assuntos
Autoimunidade , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Humanos , Autoimunidade/imunologia , Animais , Homeostase/imunologia , Tolerância Imunológica/imunologia , Doenças Autoimunes/imunologia , Diferenciação Celular/imunologia , Plasticidade Celular/imunologiaRESUMO
The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity. In this context, signals deriving from co-stimulatory molecules (i.e., CD80, CD86), co-inhibitory receptors (PD-1, CTLA-4), the tyrosine phosphatase CD45 and cytokines such as IL-2 synergize with TCR-derived signals to guide T cell fate and differentiation. The balance of these mechanisms is also crucial for the generation of CD4+ Foxp3+ regulatory T cells, a cellular subset involved in the control of immunological self-tolerance. This review provides an overview of the most relevant pathways induced by TCR activation combined with those derived from co-stimulatory and co-inhibitory molecules implicated in the cell-intrinsic modulation of T cell activation. In addition to the latter, we dissected mechanisms responsible for T cell-mediated suppression of immune cell activation through regulatory T cell generation, homeostasis, and effector functions. We also discuss how imbalanced signaling derived from TCR and accessory molecules can contribute to autoimmune disease pathogenesis.
Assuntos
Receptores de Antígenos de Linfócitos T , Tolerância a Antígenos Próprios , Transdução de Sinais , Humanos , Transdução de Sinais/imunologia , Tolerância a Antígenos Próprios/imunologia , Animais , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Ativação LinfocitáriaRESUMO
Human CD4(+)CD25(hi)Foxp3(+)CD127(-) Treg and CD4(+)CD25(-)Foxp3(-) Tconv cell functions are governed by their metabolic requirements. Here we report a comprehensive comparative analysis between ex vivo human Treg and Tconv cells that comprises analyses of the proteomic networks in subcellular compartments. We identified a dominant proteomic signature at the metabolic level that primarily impacted the highly-tuned balance between glucose and fatty-acid oxidation in the two cell types. Ex vivo Treg cells were highly glycolytic while Tconv cells used predominantly fatty-acid oxidation (FAO). When cultured in vitro, Treg cells engaged both glycolysis and FAO to proliferate, while Tconv cell proliferation mainly relied on glucose metabolism. Our unbiased proteomic analysis provides a molecular picture of the impact of metabolism on ex vivo human Treg versus Tconv cell functions that might be relevant for therapeutic manipulations of these cells.
Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicólise , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Antígenos CD4/metabolismo , Proliferação de Células , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Oxirredução , Proteômica , TranscriptomaRESUMO
AIM: We recently proposed miR-142-3p as a molecular player in inflammatory synaptopathy, a new pathogenic hallmark of multiple sclerosis (MS) and of its mouse model experimental autoimmune encephalomyelitis (EAE), that leads to neuronal loss independently of demyelination. MiR-142-3p seems to be unique among potential biomarker candidates in MS, since it is an inflammatory miRNA playing a dual role in the immune and central nervous systems. Here, we aimed to verify the impact of miR-142-3p circulating in the cerebrospinal fluid (CSF) of MS patients on clinical parameters, neuronal excitability and its potential interaction with disease modifying therapies (DMTs). METHODS AND RESULTS: In a cohort of 151 MS patients, we found positive correlations between CSF miR-142-3p levels and clinical progression, IL-1ß signalling as well as synaptic excitability measured by transcranial magnetic stimulation. Furthermore, therapy response of patients with 'low miR-142-3p' to dimethyl fumarate (DMF), an established disease-modifying treatment (DMT), was superior to that of patients with 'high miR-142-3p' levels. Accordingly, the EAE clinical course of heterozygous miR-142 mice was ameliorated by peripheral DMF treatment with a greater impact relative to their wild type littermates. In addition, a central protective effect of this drug was observed following intracerebroventricular and ex vivo acute treatments of EAE wild type mice, showing a rescue of miR-142-3p-dependent glutamatergic alterations. By means of electrophysiology, molecular and biochemical analysis, we suggest miR-142-3p as a molecular target of DMF. CONCLUSION: MiR-142-3p is a novel and potential negative prognostic CSF marker of MS and a promising tool for identifying personalised therapies.
Assuntos
Encefalomielite Autoimune Experimental/líquido cefalorraquidiano , MicroRNAs/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Transdução de Sinais/fisiologia , Adulto , Animais , Progressão da Doença , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Estudos ProspectivosRESUMO
The tumor microenvironment restrains conventional T cell (Tconv) activation while facilitating the expansion of Tregs. Here we showed that Tregs' advantage in the tumor milieu relies on supplemental energetic routes involving lipid metabolism. In murine models, tumor-infiltrating Tregs displayed intracellular lipid accumulation, which was attributable to an increased rate of fatty acid (FA) synthesis. Since the relative advantage in glucose uptake may fuel FA synthesis in intratumoral Tregs, we demonstrated that both glycolytic and oxidative metabolism contribute to Tregs' expansion. We corroborated our data in human tumors showing that Tregs displayed a gene signature oriented toward glycolysis and lipid synthesis. Our data support a model in which signals from the tumor microenvironment induce a circuitry of glycolysis, FA synthesis, and oxidation that confers a preferential proliferative advantage to Tregs, whose targeting might represent a strategy for cancer treatment.
Assuntos
Ácidos Graxos/imunologia , Glicólise/imunologia , Neoplasias Experimentais/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/imunologia , Ácidos Graxos/genética , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Oxirredução , Linfócitos T Reguladores/patologia , Microambiente Tumoral/genéticaRESUMO
The filed that links immunity and metabolism is rapidly expanding. The adipose tissue, by secreting a series of immune regulators called adipokines, represents the common mediator linking metabolic processes and immune system functions. The dysregulation of adipokine secretion, occurring in obese individuals or in conditions of malnutrition or dietary restriction, affects the activity of immune cells resulting in inflammatory autoimmune responses or increased susceptibility to infectious diseases. Alterations of cell metabolism that characterize several autoimmune diseases strongly support the idea that the immune tolerance is also regulated by metabolic pathways. The comprehension of the molecular mechanisms underlying these alterations may lead to the development of novel therapeutic strategies to control immune cell differentiation and function in conditions of autoimmunity.
Assuntos
Autoimunidade , Metabolismo Energético , Tolerância Imunológica , Imunidade , Adipocinas/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Dieta , Suscetibilidade a Doenças , Humanos , Imunomodulação , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Desnutrição/imunologia , Desnutrição/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Sobrepeso/imunologia , Sobrepeso/metabolismoRESUMO
Alterations in mitochondrial activity and morphology have been demonstrated in human cells and tissues from individuals with Down syndrome (DS), as well as in DS mouse models. An impaired activity of the transcriptional coactivator PGC-1α/PPARGC1A due to the overexpression of chromosome 21 genes, such as NRIP1/RIP140, has emerged as an underlying cause of mitochondrial dysfunction in DS. We tested the hypothesis that the activation of the PGC-1α pathway might indeed reverse this mitochondrial dysfunction. To this end, we investigated the effects of metformin, a PGC-1α-activating drug, on mitochondrial morphology and function in DS foetal fibroblasts. Metformin induced both the expression of PGC-1α and an augmentation of its activity, as demonstrated by the increased expression of target genes, strongly promoting mitochondrial biogenesis. Furthermore, metformin enhanced oxygen consumption, ATP production, and overall mitochondrial activity. Most interestingly, this treatment reversed the fragmentation of mitochondria observed in DS and induced the formation of a mitochondrial network with a branched and elongated tubular morphology. Concomitantly, cristae remodelling occurred and the alterations observed by electron microscopy were significantly reduced. We finally demonstrated that the expression of genes of the fission/fusion machinery, namely OPA1 and MFN2, was reduced in trisomic cells and increased by metformin treatment. These results indicate that metformin promotes the formation of a mitochondrial network and corrects the mitochondrial dysfunction in DS cells. We speculate that alterations in the mitochondrial dynamics can be relevant in the pathogenesis of DS and that metformin can efficiently counteract these alterations, thus exerting protective effects against DS-associated pathologies.
Assuntos
Síndrome de Down/genética , Metformina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Trifosfato de Adenosina/biossíntese , Animais , Modelos Animais de Doenças , Síndrome de Down/tratamento farmacológico , Síndrome de Down/patologia , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/biossíntese , Humanos , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossínteseRESUMO
There is a discrepancy between the in vitro anergic state of CD4(+)CD25(hi)FoxP3(+) regulatory T (Treg) cells and their in vivo proliferative capability. The underlying mechanism of this paradox is unknown. Here we show that the anergic state of Treg cells depends on the elevated activity of the mammalian target of rapamycin (mTOR) pathway induced by leptin: a transient inhibition of mTOR with rapamycin, before T cell receptor (TCR) stimulation, made Treg cells highly proliferative in the absence of exogenous interleukin-2 (IL-2). This was a dynamic and oscillatory phenomenon characterized by an early downregulation of the leptin-mTOR pathway followed by an increase in mTOR activation necessary for Treg cell expansion to occur. These data suggest that energy metabolism, through the leptin-mTOR-axis, sets responsiveness of Treg cells that use this information to control immune tolerance and autoimmunity.
Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Leptina/metabolismo , Linfócitos T Reguladores/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Antígenos CD4/biossíntese , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Anergia Clonal/efeitos dos fármacos , Anergia Clonal/genética , Progressão da Doença , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Fatores de Transcrição Forkhead/biossíntese , Humanos , Interleucina-2/imunologia , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Leptina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/imunologiaRESUMO
BACKGROUND: Pentraxin 3 (PTX3), an acute-phase inflammation protein produced by several cell types, has long been described as a possible biomarker for age-related cardiovascular and cerebrovascular diseases. Although several mechanisms of action have been identified to date in the vascular and immune systems, the direct effects of PTX3 on isolated endothelial cells at morphological and metabolic levels remain unknown. FINDINGS: PTX3 induced cytoplasmic vacuolization and dilution of mitochondrial matrix in isolated, human endothelial cells. Moreover, metabolic assays revealed that PTX3 increases respiratory capacity in support of mitochondrial function, and partially sustains the glycolytic pathway. CONCLUSIONS: PTX3 has, per se, a direct action on ultrastructural and bioenergetic parameters of isolated endothelial cells. This finding can be associated with our previous demonstration of a deleterious effect of PTX3 on the endothelial layer. More studies are needed to clearly demonstrate any direct correlation between these ultrastructural and bioenergetic changes with endothelial dysfunction, especially with regard to age-related cerebro- and cardio-vascular diseases.
RESUMO
Prep1 is a gene encoding for a homeodomain transcription factor which induces hepatic and muscular insulin resistance. In this study, we show that Prep1 hypomorphic heterozygous (Prep1i/+) mice, expressing low levels of protein, featured a 23% and a 25% reduction of total body lipid content and epididymal fat, respectively. The percentage of the small adipocytes (25-75⯵m) was 30% higher in Prep1i/+ animals than in the WT, with a reciprocal difference in the large adipose cells (100-150 and >150⯵m). Insulin-stimulated insulin receptor tyrosine and Akt serine phosphorylation markedly increased in Prep1i/+ mice, paralleled by 3-fold higher glucose uptake and a significant increase of proadipogenic genes such as C/EBPα, GLUT4, and FABP4. Moreover, T cells infiltration and TNF-α, IFNγ and leptin expression were reduced in adipose tissue from Prep1i/+ mice, while adiponectin levels were 2-fold higher. Furthermore, Prep1i/+ mature adipocytes released lower amounts of pro-inflammatory cytokines and higher amount of adiponectin compared to WT cells. Incubation of murine liver cell line (NMuLi) with conditioned media (CM) from mature adipocytes of Prep1i/+ mice improved glucose metabolism, while those from WT mice had no effect. Consistent with these data, Prep1 overexpression in 3T3-L1 adipocytes impaired adipogenesis and insulin signaling, and increased proinflammatory cytokine secretion. All these findings suggest that Prep1 silencing reduces inflammatory response and increases insulin sensitivity in adipose tissue. In addition, CM from mature adipocytes of Prep1i/+ mice improve metabolism in hepatic cells.
Assuntos
Tecido Adiposo Branco/metabolismo , Proteínas de Homeodomínio/metabolismo , Células 3T3-L1 , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Adipogenia , Adipocinas/metabolismo , Animais , Diferenciação Celular , Citocinas/metabolismo , Epididimo/metabolismo , Glucose/metabolismo , Heterozigoto , Imunofenotipagem , Inflamação/patologia , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Transdução de Sinais , TransfecçãoRESUMO
BACKGROUND: Mesenchymal stem cells (MSCs) display a therapeutic plasticity because of their ability to modulate immunity, foster tissue repair, and differentiate into mesodermal cells. IFN-γ has been described to differently affect human mesenchymal stem cell (hMSC) and mouse mesenchymal stem cell (mMSC) immunomodulation and differentiation, depending on the inflammatory milieu. OBJECTIVE: We aimed at dissecting the relevant intracellular pathways through which IFN-γ affects MSC plasticity and the consequence of their manipulation on MSC functions. METHODS: Modification of relevant IFN-γ-dependent pathways in mMSCs was carried out in vitro through gene silencing or chemical inhibition of key components. Functional outcomes were assessed by means of Western blotting, real-time PCR, differentiation, and proliferation assays on MSCs. The effect on T cells was addressed by T-cell proliferation assays; the effect of mammalian target of rapamycin (mTOR) manipulation in MSCs was studied in vivo in a mouse model of delayed-type hypersensitivity assay. To address whether similar mechanisms are involved also in hMSCs on IFN-γ stimulation, the effect of chemical inhibition on the same intracellular pathways was assessed by means of Western blotting, and the final outcome on immunomodulatory properties was evaluated based on real-time PCR and T-cell proliferation. RESULTS: We revealed that in mMSCs IFN-γ-induced immunoregulation is mediated by early phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT3, which is significantly enhanced by an extracellular signal-regulated kinase 1/2-dependent mTOR inhibition, thereby promoting pSTAT1 nuclear translocation. Accordingly, after intracellular mTOR inhibition, MSCs augmented their ability to inhibit T-cell proliferation and control delayed-type hypersensitivity in vivo. Similarly, on mTOR blockade, hMSCs also enhanced their immunoregulatory features. A sustained exposure to IFN-γ led to inhibition of STAT3 activity, which in mMSCs resulted in an impaired proliferation and differentiation. CONCLUSION: These results provide new insights about MSC intracellular pathways affected by IFN-γ, demonstrating that pharmacologic or genetic manipulation of MSCs can enhance their immunomodulatory functions, which could be translated into novel therapeutic approaches.
Assuntos
Interferon gama/farmacologia , Células-Tronco Mesenquimais/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT3/imunologia , Serina-Treonina Quinases TOR/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Hipersensibilidade Tardia/imunologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Pentraxin 3 (PTX3), the prototype of long pentraxins, has been described to be associated with endothelial dysfunction in different cardiovascular disorders. No study has yet evaluated the possible direct effect of PTX3 on vascular function. METHODS AND RESULTS: Through in vitro experiments of vascular reactivity and ultrastructural analyses, we demonstrate that PTX3 induces dysfunction and morphological changes in the endothelial layer through a P-selectin/matrix metalloproteinase-1 pathway. The latter hampered the detachment of endothelial nitric oxide synthase from caveolin-1, leading to an impairment of nitric oxide signaling. In vivo studies showed that administering PTX3 to wild-type mice induced endothelial dysfunction and increased blood pressure, an effect absent in P-selectin-deficient mice. In isolated human umbilical vein endothelial cells, PTX3 significantly blunted nitric oxide production through the matrix metalloproteinase-1 pathway. Finally, using ELISA, we found that hypertensive patients (n=31) have higher plasma levels of PTX3 and its mediators P-selectin and matrix metalloproteinase-1 than normotensive subjects (n=21). CONCLUSIONS: Our data show for the first time a direct role of PTX3 on vascular function and blood pressure homeostasis, identifying the molecular mechanisms involved. The findings in humans suggest that PTX3, P-selectin, and matrix metalloproteinase-1 may be novel biomarkers that predict the onset of vascular dysfunction in hypertensive patients.
Assuntos
Proteína C-Reativa/fisiologia , Endotélio Vascular/fisiopatologia , Hipertensão/fisiopatologia , Metaloproteinase 1 da Matriz/fisiologia , Selectina-P/fisiologia , Componente Amiloide P Sérico/fisiologia , Animais , Pressão Sanguínea , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaloproteinase 1 da Matriz/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/fisiologia , Óxido Nítrico/metabolismo , Receptores de IgG/deficiência , Transdução de Sinais/fisiologia , VasodilataçãoRESUMO
Whole-body energy metabolism is regulated by the hypothalamus and has an impact on diverse tissue functions. Here we show that selective knockdown of Sirtuin 1 Sirt1 in hypothalamic Agouti-related peptide-expressing neurons, which renders these cells less responsive to cues of low energy availability, significantly promotes CD4(+) T-cell activation by increasing production of T helper 1 and 17 proinflammatory cytokines via mediation of the sympathetic nervous system. These phenomena were associated with an impaired thymic generation of forkhead box P3 (FoxP3(+)) naturally occurring regulatory T cells and their reduced suppressive capacity in the periphery, which resulted in increased delayed-type hypersensitivity responses and autoimmune disease susceptibility in mice. These observations unmask a previously unsuspected role of hypothalamic feeding circuits in the regulation of adaptive immune response.
Assuntos
Fome , Hipotálamo/patologia , Neurônios/patologia , Linfócitos T Reguladores/citologia , Imunidade Adaptativa , Alelos , Animais , Antígenos/metabolismo , Autoimunidade , Domínio Catalítico , Encefalomielite Autoimune Experimental/metabolismo , Citometria de Fluxo , Privação de Alimentos , Fatores de Transcrição Forkhead/metabolismo , Predisposição Genética para Doença , Humanos , Hipotálamo/metabolismo , Inflamação , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Sirtuína 1/metabolismo , Timo/metabolismoRESUMO
Resveratrol, a dietary polyphenol, is under consideration as chemopreventive and chemotherapeutic agent for several diseases, including cancer. However, its mechanisms of action and its effects on non-tumor cells, fundamental to understand its real efficacy as chemopreventive agent, remain largely unknown. Proline-rich tyrosine kinase 2 (PYK2), a non-receptor tyrosine kinase acting as signaling mediator of different stimuli, behaves as tumor-suppressor in prostate. Since, PYK2 and RSV share several fields of interaction, including oxidative stress, we have investigated their functional relationship in human non-transformed prostate EPN cells and in their tumor-prone counterpart EPN-PKM, expressing a PYK2 dead-kinase mutant. We show that RSV has a strong biological activity in both cell lines, decreasing ROS production, inducing morphological changes and reversible growth arrest, and activating autophagy but not apoptosis. Interestingly, the PYK2 mutant increases basal ROS and autophagy levels, and modulates the intensity of RSV effects. In particular, the anti-oxidant effect of RSV is more potent in EPN than in EPN-PKM, whereas its anti-proliferative and pro-autophagic effects are more significant in EPN-PKM. Consistently, PYK2 depletion by RNAi replicates the effects of the PKM mutant. Taken together, our results reveal that PYK2 and RSV act on common cellular pathways and suggest that RSV effects on prostate cells may depend on mutational-state or expression levels of PYK2 that emerges as a possible mediator of RSV mechanisms of action. Moreover, the observation that resveratrol effects are reversible and not associated to apoptosis in tumor-prone EPN-PKM cells suggests caution for its use in humans.
Assuntos
Antioxidantes/farmacocinética , Quinase 2 de Adesão Focal/genética , Próstata/efeitos dos fármacos , Próstata/metabolismo , Estilbenos/farmacologia , Autofagia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Quinase 2 de Adesão Focal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Mutação , Estresse Oxidativo/efeitos dos fármacos , Próstata/citologia , ResveratrolRESUMO
The study of how different intracellular metabolic signaling pathways impact the control of self-immune tolerance and how metabolic dysregulation in overweight, obesity, and diabetes is able to alter self-immune tolerance are topics of intensive investigation. Recent evidence suggests that metabolic and autoimmune diseases, both characterized by chronic inflammation and an altered self-immune tolerance, are more common in affluent countries. The reasons for such phenomena are still not completely understood, but the 'metabolic pressure' induced by nutritional overload, typical of more developed countries, seems to play a role. In this context, the discovery of the adipose tissue-derived hormone leptin has shed fundamental insights on how these processes might occur. We believe that there is a strong relationship among leptin, metabolic state, and immunological self-tolerance. We hypothesize that the leptin-induced metabolic pressure sets the basis for an exaggerated immuno-inflammatory response to altered self or non-self, leading to chronic inflammation, metabolic dysregulation, and autoimmunity in subjects with risk factors (i.e. genetic predisposition, environment, sex, infectious agents, etc). Capitalizing on our joint effort and trans-disciplinary expertise in metabolism, self-tolerance, and autoimmune diseases, this review highlights key questions on the basic mechanisms governing immune tolerance in the context of metabolic and autoimmune disease susceptibility.
Assuntos
Doenças Autoimunes/imunologia , Diabetes Mellitus/imunologia , Leptina/metabolismo , Tolerância a Antígenos Próprios , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Diabetes Mellitus/metabolismo , Metabolismo Energético , Humanos , Tolerância Imunológica , Inflamação/imunologia , Inflamação/metabolismo , Transdução de SinaisRESUMO
Disorders such as obesity and type 2 diabetes have been linked to immune dysfunction, raising the possibility that metabolic alterations can be induced by or be a consequence of alterations in immunological tolerance. Here, we describe how intracellular metabolic signalling pathways can 'sense' host energy/nutritional status, and in response, modulate regulatory T (Treg) cell function. In particular, we focus on mammalian target of rapamycin (mTOR) signalling, and how stimuli such as nutrients and leptin activate mTOR in an oscillatory manner to determine Treg cell proliferation status. We propose that metabolic changes such as nutritional deprivation or overload could dictate the characteristics of the Treg cell compartment and subsequent downstream immune reactions.