Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 261(5125): 1150-4, 1993 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-17790350

RESUMO

Measurements made in the outer ring of the northern polar vortex from October 1991 through March 1992 reveal an altitude-dependent change in ozone, with a decrease at the bottom of the vortex and a substantial increase at the highest altitudes accessible to measurement. The increase is the result of ozone-rich air entering the vortex, and the decrease reflects ozone loss accumulated after the descent of the air through high concentrations of reactive chlorine. The depleted air that is released out of the bottom of the vortex is sufficient to significantly reduce column ozone at mid-latitudes.

2.
Science ; 266(5184): 398-404, 1994 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17816682

RESUMO

Simultaneous in situ measurements of the concentrations of OH, HO(2), ClO, BrO, NO, and NO(2) demonstrate the predominance of odd-hydrogen and halogen free-radical catalysis in determining the rate of removal of ozone in the lower stratosphere during May 1993. A single catalytic cycle, in which the rate-limiting step is the reaction of HO(2) with ozone, accounted for nearly one-half of the total O(3) removal in this region of the atmosphere. Halogen-radical chemistry was responsible for approximately one-third of the photochemical removal of O(3); reactions involving BrO account for one-half of this loss. Catalytic destruction by NO(2), which for two decades was considered to be the predominant loss process, accounted for less than 20 percent of the O(3) removal. The measurements demonstrate quantitatively the coupling that exists between the radical families. The concentrations of HO(2) and ClO are inversely correlated with those of NO and NO(2). The direct determination of the relative importance of the catalytic loss processes, combined with a demonstration of the reactions linking the hydrogen, halogen, and nitrogen radical concentrations, shows that in the air sampled the rate of O(3) removal was inversely correlated with total NOx, loading.

3.
Science ; 261(5125): 1146-9, 1993 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-17790349

RESUMO

In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapolated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) in the winter of 1991-1992. The analysis indicates removal of 15 to 20 percent of ambient ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. Observations during AASE II define rates of removal of chlorine monoxide attributable to reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double.

4.
Rev Sci Instrum ; 50(5): 666, 1979 May.
Artigo em Inglês | MEDLINE | ID: mdl-18699579

RESUMO

The response of a monochromator to an intense line, the so-called instrumental profile or slit function, is studied over a range of signals comprising seven orders of magnitude, which corresponds to a maximum frequency shift of about five times the slit width. For a 1-m double monochromator with concave, holographic gratings, the observed profile is approximately described by diffraction theory except for the extreme wings.

5.
Appl Opt ; 36(12): 2568-85, 1997 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18253247

RESUMO

The National Oceanic and Atmospheric Administration Aeronomy Laboratory's rapid tunable daylight differential absorption lidar system for monitoring ozone throughout the free troposphere is described. The system components are optimized to provide continuously and rapidly profiles of ozone, day or night, with a vertical resolution of 1 km and an absolute accuracy of +/-10% to the tropopause under clear sky conditions. Routine observations of ozone with frequent error assessments are made by scanning wavelengths between 286 and 292 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA