Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Mol Psychiatry ; 28(3): 1248-1255, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36476732

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) persists in older age and is postulated as a risk factor for cognitive impairment and Alzheimer's Disease (AD). However, these findings rely primarily on electronic health records and can present biased estimates of disease prevalence. An obstacle to investigating age-related cognitive decline in ADHD is the absence of large-scale studies following patients with ADHD into older age. Alternatively, this study aimed to determine whether genetic liability for ADHD, as measured by a well-validated ADHD polygenic risk score (ADHD-PRS), is associated with cognitive decline and the development of AD pathophysiology in cognitively unimpaired (CU) older adults. We calculated a weighted ADHD-PRS in 212 CU individuals without a clinical diagnosis of ADHD (55-90 years). These individuals had baseline amyloid-ß (Aß) positron emission tomography, longitudinal cerebrospinal fluid (CSF) phosphorylated tau at threonine 181 (p-tau181), magnetic resonance imaging, and cognitive assessments for up to 6 years. Linear mixed-effects models were used to test the association of ADHD-PRS with cognition and AD biomarkers. Higher ADHD-PRS was associated with greater cognitive decline over 6 years. The combined effect between high ADHD-PRS and brain Aß deposition on cognitive deterioration was more significant than each individually. Additionally, higher ADHD-PRS was associated with increased CSF p-tau181 levels and frontoparietal atrophy in CU Aß-positive individuals. Our results suggest that genetic liability for ADHD is associated with cognitive deterioration and the development of AD pathophysiology. Findings were mostly observed in Aß-positive individuals, suggesting that the genetic liability for ADHD increases susceptibility to the harmful effects of Aß pathology.


Assuntos
Doença de Alzheimer , Transtorno do Deficit de Atenção com Hiperatividade , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons/métodos , Fatores de Risco , Proteínas tau , Biomarcadores/líquido cefalorraquidiano
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879569

RESUMO

There are currently no disease-modifying treatments for Alzheimer's disease (AD), and an understanding of preclinical causal biomarkers to help target disease pathogenesis in the earliest phases remains elusive. Here, we investigated whether 19 metabolites previously associated with midlife cognition-a preclinical predictor of AD-translate to later clinical risk, using Mendelian randomization (MR) to tease out AD-specific causal relationships. Summary statistics from the largest genome-wide association studies (GWASs) for AD and metabolites were used to perform bidirectional univariable MR. Bayesian model averaging (BMA) was additionally performed to address high correlation between metabolites and identify metabolite combinations that may be on the AD causal pathway. Univariable MR indicated four extra-large high-density lipoproteins (XL.HDL) on the causal pathway to AD: free cholesterol (XL.HDL.FC: 95% CI = 0.78 to 0.94), total lipids (XL.HDL.L: 95% CI = 0.80 to 0.97), phospholipids (XL.HDL.PL: 95% CI = 0.81 to 0.97), and concentration of XL.HDL particles (95% CI = 0.79 to 0.96), significant at an adjusted P < 0.009. MR-BMA corroborated XL.HDL.FC to be among the top three causal metabolites, in addition to total cholesterol in XL.HDL (XL.HDL.C) and glycoprotein acetyls (GP). Both XL.HDL.C and GP demonstrated suggestive univariable evidence of causality (P < 0.05), and GP successfully replicated within an independent dataset. This study offers insight into the causal relationship between metabolites demonstrating association with midlife cognition and AD. It highlights GP in addition to several XL.HDLs-particularly XL.HDL.FC-as causal candidates warranting further investigation. As AD pathology is thought to develop decades prior to symptom onset, expanding on these findings could inform risk reduction strategies.


Assuntos
Doença de Alzheimer/genética , Sangue/metabolismo , Cognição/fisiologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Teorema de Bayes , Biomarcadores/sangue , Causalidade , Colesterol , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Biologia Computacional/métodos , Bases de Dados Genéticas , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana/métodos , Metabolômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Triglicerídeos/sangue
3.
Circulation ; 145(14): 1040-1052, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35050683

RESUMO

BACKGROUND: White matter hyperintensities (WMH), identified on T2-weighted magnetic resonance images of the human brain as areas of enhanced brightness, are a major risk factor of stroke, dementia, and death. There are no large-scale studies testing associations between WMH and circulating metabolites. METHODS: We studied up to 9290 individuals (50.7% female, average age 61 years) from 15 populations of 8 community-based cohorts. WMH volume was quantified from T2-weighted or fluid-attenuated inversion recovery images or as hypointensities on T1-weighted images. Circulating metabolomic measures were assessed with mass spectrometry and nuclear magnetic resonance spectroscopy. Associations between WMH and metabolomic measures were tested by fitting linear regression models in the pooled sample and in sex-stratified and statin treatment-stratified subsamples. Our basic models were adjusted for age, sex, age×sex, and technical covariates, and our fully adjusted models were also adjusted for statin treatment, hypertension, type 2 diabetes, smoking, body mass index, and estimated glomerular filtration rate. Population-specific results were meta-analyzed using the fixed-effect inverse variance-weighted method. Associations with false discovery rate (FDR)-adjusted P values (PFDR)<0.05 were considered significant. RESULTS: In the meta-analysis of results from the basic models, we identified 30 metabolomic measures associated with WMH (PFDR<0.05), 7 of which remained significant in the fully adjusted models. The most significant association was with higher level of hydroxyphenylpyruvate in men (PFDR.full.adj=1.40×10-7) and in both the pooled sample (PFDR.full.adj=1.66×10-4) and statin-untreated (PFDR.full.adj=1.65×10-6) subsample. In men, hydroxyphenylpyruvate explained 3% to 14% of variance in WMH. In men and the pooled sample, WMH were also associated with lower levels of lysophosphatidylcholines and hydroxysphingomyelins and a larger diameter of low-density lipoprotein particles, likely arising from higher triglyceride to total lipids and lower cholesteryl ester to total lipids ratios within these particles. In women, the only significant association was with higher level of glucuronate (PFDR=0.047). CONCLUSIONS: Circulating metabolomic measures, including multiple lipid measures (eg, lysophosphatidylcholines, hydroxysphingomyelins, low-density lipoprotein size and composition) and nonlipid metabolites (eg, hydroxyphenylpyruvate, glucuronate), associate with WMH in a general population of middle-aged and older adults. Some metabolomic measures show marked sex specificities and explain a sizable proportion of WMH variance.


Assuntos
Diabetes Mellitus Tipo 2 , Substância Branca , Idoso , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Metaboloma , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
4.
Alzheimers Dement ; 19(12): 5860-5871, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37654029

RESUMO

With the increase in large multimodal cohorts and high-throughput technologies, the potential for discovering novel biomarkers is no longer limited by data set size. Artificial intelligence (AI) and machine learning approaches have been developed to detect novel biomarkers and interactions in complex data sets. We discuss exemplar uses and evaluate current applications and limitations of AI to discover novel biomarkers. Remaining challenges include a lack of diversity in the data sets available, the sheer complexity of investigating interactions, the invasiveness and cost of some biomarkers, and poor reporting in some studies. Overcoming these challenges will involve collecting data from underrepresented populations, developing more powerful AI approaches, validating the use of noninvasive biomarkers, and adhering to reporting guidelines. By harnessing rich multimodal data through AI approaches and international collaborative innovation, we are well positioned to identify clinically useful biomarkers that are accurate, generalizable, unbiased, and acceptable in clinical practice. HIGHLIGHTS: Artificial intelligence and machine learning approaches may accelerate dementia biomarker discovery. Remaining challenges include data set suitability due to size and bias in cohort selection. Multimodal data, diverse data sets, improved machine learning approaches, real-world validation, and interdisciplinary collaboration are required.


Assuntos
Doença de Alzheimer , Pesquisa Biomédica , Humanos , Inteligência Artificial , Doença de Alzheimer/diagnóstico , Aprendizado de Máquina
5.
Alzheimers Dement ; 19(8): 3350-3364, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36790009

RESUMO

INTRODUCTION: This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. METHODS: Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). RESULTS: AT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DISCUSSION: This study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Multiômica , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
6.
J Lipid Res ; 60(6): 1136-1143, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30885925

RESUMO

BMI is correlated with circulating metabolites, but few studies discuss other adiposity measures, and little is known about metabolomic correlates of BMI from early life. We investigated associations between different adiposity measures, BMI from childhood through adulthood, and metabolites quantified from serum using 1H NMR spectroscopy in 900 British men and women aged 60-64. We assessed BMI, waist-to-hip ratio (WHR), android-to-gynoid fat ratio (AGR), and BMI from childhood through adulthood. Linear regression with Bonferroni adjustment was performed to assess adiposity and metabolites. Of 233 metabolites, 168; 126; and 133 were associated with BMI, WHR, and AGR at age 60-64, respectively. Associations were strongest for HDL, particularly HDL particle size-e.g., there was 0.08 SD decrease in HDL diameter (95% CI: 0.07-0.10) with each unit increase in BMI. BMI-adjusted AGR or WHR were associated with 31 metabolites where there was no metabolome-wide association with BMI. We identified inverse associations between BMI at age 7 and glucose or glycoprotein at age 60-64 and relatively large LDL cholesteryl ester with postadolescent BMI gains. In summary, we identified metabolomic correlates of central adiposity and earlier-life BMI. These findings support opportunities to leverage metabolomics in early prevention of cardiovascular risk attributable to body fatness.


Assuntos
Metabolômica/métodos , Obesidade/metabolismo , Obesidade/fisiopatologia , Adiposidade/fisiologia , Adolescente , Adulto , Fatores Etários , Índice de Massa Corporal , Criança , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Alzheimers Dement ; 15(6): 817-827, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31078433

RESUMO

INTRODUCTION: A critical and as-yet unmet need in Alzheimer's disease (AD) is the discovery of peripheral small molecule biomarkers. Given that brain pathology precedes clinical symptom onset, we set out to test whether metabolites in blood associated with pathology as indexed by cerebrospinal fluid (CSF) AD biomarkers. METHODS: This study analyzed 593 plasma samples selected from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, of individuals who were cognitively healthy (n = 242), had mild cognitive impairment (n = 236), or had AD-type dementia (n = 115). Logistic regressions were carried out between plasma metabolites (n = 883) and CSF markers, magnetic resonance imaging, cognition, and clinical diagnosis. RESULTS: Eight metabolites were associated with amyloid ß and one with t-tau in CSF, these were primary fatty acid amides (PFAMs), lipokines, and amino acids. From these, PFAMs, glutamate, and aspartate also associated with hippocampal volume and memory. DISCUSSION: PFAMs have been found increased and associated with amyloid ß burden in CSF and clinical measures.


Assuntos
Peptídeos beta-Amiloides , Amiloidose/sangue , Biomarcadores , Hipocampo , Memória/fisiologia , Metabolômica , Idoso , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Amiloidose/líquido cefalorraquidiano , Amiloidose/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Feminino , Hipocampo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Proteínas tau/sangue , Proteínas tau/líquido cefalorraquidiano
8.
Alzheimers Dement ; 13(2): 140-151, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27693183

RESUMO

INTRODUCTION: The aim of this study was to (1) replicate previous associations between six blood lipids and Alzheimer's disease (AD) (Proitsi et al 2015) and (2) identify novel associations between lipids, clinical AD diagnosis, disease progression and brain atrophy (left/right hippocampus/entorhinal cortex). METHODS: We performed untargeted lipidomic analysis on 148 AD and 152 elderly control plasma samples and used univariate and multivariate analysis methods. RESULTS: We replicated our previous lipids associations and reported novel associations between lipids molecules and all phenotypes. A combination of 24 molecules classified AD patients with >70% accuracy in a test and a validation data set, and we identified lipid signatures that predicted disease progression (R2 = 0.10, test data set) and brain atrophy (R2 ≥ 0.14, all test data sets except left entorhinal cortex). We putatively identified a number of metabolic features including cholesteryl esters/triglycerides and phosphatidylcholines. DISCUSSION: Blood lipids are promising AD biomarkers that may lead to new treatment strategies.


Assuntos
Doença de Alzheimer/sangue , Lipídeos/sangue , Idoso , Doença de Alzheimer/diagnóstico por imagem , Atrofia , Biomarcadores/sangue , Estudos de Coortes , Progressão da Doença , Córtex Entorrinal/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Análise Multivariada , Análise de Regressão
9.
PLoS Med ; 12(6): e1001841; discussion e1001841, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26079503

RESUMO

BACKGROUND: Potentially modifiable risk factors including obesity, diabetes, hypertension, and smoking are associated with Alzheimer disease (AD) and represent promising targets for intervention. However, the causality of these associations is unclear. We sought to assess the causal nature of these associations using Mendelian randomization (MR). METHODS AND FINDINGS: We used SNPs associated with each risk factor as instrumental variables in MR analyses. We considered type 2 diabetes (T2D, NSNPs = 49), fasting glucose (NSNPs = 36), insulin resistance (NSNPs = 10), body mass index (BMI, NSNPs = 32), total cholesterol (NSNPs = 73), HDL-cholesterol (NSNPs = 71), LDL-cholesterol (NSNPs = 57), triglycerides (NSNPs = 39), systolic blood pressure (SBP, NSNPs = 24), smoking initiation (NSNPs = 1), smoking quantity (NSNPs = 3), university completion (NSNPs = 2), and years of education (NSNPs = 1). We calculated MR estimates of associations between each exposure and AD risk using an inverse-variance weighted approach, with summary statistics of SNP-AD associations from the International Genomics of Alzheimer's Project, comprising a total of 17,008 individuals with AD and 37,154 cognitively normal elderly controls. We found that genetically predicted higher SBP was associated with lower AD risk (odds ratio [OR] per standard deviation [15.4 mm Hg] of SBP [95% CI]: 0.75 [0.62-0.91]; p = 3.4 × 10(-3)). Genetically predicted higher SBP was also associated with a higher probability of taking antihypertensive medication (p = 6.7 × 10(-8)). Genetically predicted smoking quantity was associated with lower AD risk (OR per ten cigarettes per day [95% CI]: 0.67 [0.51-0.89]; p = 6.5 × 10(-3)), although we were unable to stratify by smoking history; genetically predicted smoking initiation was not associated with AD risk (OR = 0.70 [0.37, 1.33]; p = 0.28). We saw no evidence of causal associations between glycemic traits, T2D, BMI, or educational attainment and risk of AD (all p > 0.1). Potential limitations of this study include the small proportion of intermediate trait variance explained by genetic variants and other implicit limitations of MR analyses. CONCLUSIONS: Inherited lifetime exposure to higher SBP is associated with lower AD risk. These findings suggest that higher blood pressure--or some environmental exposure associated with higher blood pressure, such as use of antihypertensive medications--may reduce AD risk.


Assuntos
Doença de Alzheimer/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Fatores de Risco
10.
PLoS Med ; 11(9): e1001713, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25226301

RESUMO

BACKGROUND: Although altered lipid metabolism has been extensively implicated in the pathogenesis of Alzheimer disease (AD) through cell biological, epidemiological, and genetic studies, the molecular mechanisms linking cholesterol and AD pathology are still not well understood and contradictory results have been reported. We have used a Mendelian randomization approach to dissect the causal nature of the association between circulating lipid levels and late onset AD (LOAD) and test the hypothesis that genetically raised lipid levels increase the risk of LOAD. METHODS AND FINDINGS: We included 3,914 patients with LOAD, 1,675 older individuals without LOAD, and 4,989 individuals from the general population from six genome wide studies drawn from a white population (total n=10,578). We constructed weighted genotype risk scores (GRSs) for four blood lipid phenotypes (high-density lipoprotein cholesterol [HDL-c], low-density lipoprotein cholesterol [LDL-c], triglycerides, and total cholesterol) using well-established SNPs in 157 loci for blood lipids reported by Willer and colleagues (2013). Both full GRSs using all SNPs associated with each trait at p<5×10-8 and trait specific scores using SNPs associated exclusively with each trait at p<5 × 10-8 were developed. We used logistic regression to investigate whether the GRSs were associated with LOAD in each study and results were combined together by meta-analysis. We found no association between any of the full GRSs and LOAD (meta-analysis results: odds ratio [OR]=1.005, 95% CI 0.82-1.24, p = 0.962 per 1 unit increase in HDL-c; OR=0.901, 95% CI 0.65-1.25, p=0.530 per 1 unit increase in LDL-c; OR=1.104, 95% CI 0.89-1.37, p=0.362 per 1 unit increase in triglycerides; and OR=0.954, 95% CI 0.76-1.21, p=0.688 per 1 unit increase in total cholesterol). Results for the trait specific scores were similar; however, the trait specific scores explained much smaller phenotypic variance. CONCLUSIONS: Genetic predisposition to increased blood cholesterol and triglyceride lipid levels is not associated with elevated LOAD risk. The observed epidemiological associations between abnormal lipid levels and LOAD risk could therefore be attributed to the result of biological pleiotropy or could be secondary to LOAD. Limitations of this study include the small proportion of lipid variance explained by the GRS, biases in case-control ascertainment, and the limitations implicit to Mendelian randomization studies. Future studies should focus on larger LOAD datasets with longitudinal sampled peripheral lipid measures and other markers of lipid metabolism, which have been shown to be altered in LOAD. Please see later in the article for the Editors' Summary.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Colesterol/genética , Predisposição Genética para Doença/genética , Análise da Randomização Mendeliana/métodos , Triglicerídeos/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Colesterol/sangue , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Estudos Longitudinais , Masculino , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Triglicerídeos/sangue
11.
Alzheimers Dement ; 10(6): 724-34, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24768341

RESUMO

Blood proteins and their complexes have become the focus of a great deal of interest in the context of their potential as biomarkers of Alzheimer's disease (AD). We used a SOMAscan assay for quantifying 1001 proteins in blood samples from 331 AD, 211 controls, and 149 mild cognitive impaired (MCI) subjects. The strongest associations of protein levels with AD outcomes were prostate-specific antigen complexed to α1-antichymotrypsin (AD diagnosis), pancreatic prohormone (AD diagnosis, left entorhinal cortex atrophy, and left hippocampus atrophy), clusterin (rate of cognitive decline), and fetuin B (left entorhinal atrophy). Multivariate analysis found that a subset of 13 proteins predicted AD with an accuracy of area under the curve of 0.70. Our replication of previous findings provides further evidence that levels of these proteins in plasma are truly associated with AD. The newly identified proteins could be potential biomarkers and are worthy of further investigation.


Assuntos
Doença de Alzheimer/sangue , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Imageamento por Ressonância Magnética , Proteômica , Idoso , Idoso de 80 Anos ou mais , Atrofia/etiologia , Encéfalo/patologia , Disfunção Cognitiva/sangue , Estudos de Coortes , Feminino , Humanos , Modelos Logísticos , Masculino , Curva ROC
12.
Ann Clin Transl Neurol ; 11(3): 698-709, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282238

RESUMO

OBJECTIVE: We aimed to describe plasma protein biomarkers of multiple sclerosis risk and to explore protein biomarkers of disease severity using radiological outcome measures. METHODS: Multiple sclerosis cases and controls were identified in UK Biobank, a longitudinal cohort study of ~500,000 British adults. Plasma proteins were assayed in ~50,000 UK Biobank participants using the Olink proximity extension assay. We performed case-control association testing to examine the association between 2911 proteins and multiple sclerosis, using linear models adjusted for confounding covariates. Associations with radiological lesion burden and brain volume were determined in a subset of the cohort with available magnetic resonance imaging, using normalized T2-hyperintensity volume or whole brain volume as the outcome measure. RESULTS: In total, 407 prevalent multiple sclerosis cases and 39,979 healthy controls were included. We discovered 72 proteins associated with multiple sclerosis at a Bonferroni-adjusted p value of 0.05, including established markers such as neurofilament light chain and glial fibrillary acidic protein. We observed a decrease in plasma Granzyme A, a marker of T cell and NK cell degranulation, which was specific to multiple sclerosis. Higher levels of plasma proteins involved in coagulation were associated with lower T2 lesion burden and preserved brain volume. INTERPRETATION: We report the largest plasma proteomic screen of multiple sclerosis, replicating important known associations and suggesting novel markers, such as the reduction in granzyme A. While these findings require external validation, they demonstrate the power of biobank-scale datasets for discovering new biomarkers for multiple sclerosis.


Assuntos
Esclerose Múltipla , Adulto , Humanos , Esclerose Múltipla/patologia , Granzimas , Estudos Longitudinais , Proteômica , Bancos de Espécimes Biológicos , Biobanco do Reino Unido , Biomarcadores , Proteínas Sanguíneas
13.
Comput Biol Med ; 176: 108588, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761503

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed. METHOD: Here, we propose a machine learning-based approach to detect the key metabolites and proteins involved in MCI progression to AD using data from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. RESULTS: Multiclass models of metabolites highlighted nine features further validated in an independent cohort (0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the algorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. CONCLUSIONS: This omics integration approach highlighted a set of molecules associated with MCI conversion important in neuronal and glia inflammation pathways.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Lipidômica , Proteômica , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/sangue , Disfunção Cognitiva/metabolismo , Humanos , Proteômica/métodos , Masculino , Idoso , Feminino , Lipidômica/métodos , Biomarcadores/sangue , Biomarcadores/metabolismo , Animais , Progressão da Doença , Aprendizado de Máquina , Idoso de 80 Anos ou mais
14.
Clin Infect Dis ; 56(12): 1695-703, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23449268

RESUMO

BACKGROUND: The roles of single-nucleotide polymorphisms (SNPs) at HLA-DP and IL28B loci on hepatitis B surface antigen (HBsAg) seroclearance in chronic hepatitis B (CHB) infection are unknown. METHODS: We compared the HLA-DP (rs3077, rs9277378, rs3128917) and IL28B (rs12979860, rs8099917) polymorphisms of 203 CHB patients achieving spontaneous HBsAg seroclearance with 203 age- and sex-matched CHB patients without HBsAg seroclearance (controls). RESULTS: The distribution of all 5 polymorphisms was in Hardy-Weinberg equilibrium. HLA-DP rs3077 was associated with HBsAg seroclearance in terms of allelic frequency (minor allele A vs major allele G, P = .035; odds ratio [OR], 0.699; 95% confidence interval [CI], .501-.976) and genotypic frequency (AA vs GG/GA, P = .014; OR, 0.295; 95% CI, .106-.822). Haplotype analysis of HLA-DP polymorphisms showed haplotype block GAT (rs3077/rs9277378/rs3128917) to be associated with HBsAg seroclearance (OR, 2.17; 95% CI, 1.06-4.45, P = .034). Influence of HLA-DP polymorphisms on HBsAg seroclearance was more pronounced in younger patients, with the OR for rs3077 minor allele A and haplotype block GAT being 0.560 and 2.68, respectively, among patients aged <50 years (P = .027 and P = .047, respectively). IL28B haplotype block CG (rs12979860/rs8099917) was associated with HBsAg seroclearance (OR, 10.5, P = .026). None of the 5 polymorphisms influenced anti-HBs positivity among patients achieving HBsAg seroclearance, or serum HBV DNA and HBsAg titers among controls (P > .05). CONCLUSIONS: Specific SNPs in HLA-DP and IL28B locus, through individual and haplotype analysis, were associated with a higher chance of HBsAg seroclearance in CHB infection. The associations were more prominent in patients with HBsAg seroclearance at a younger age.


Assuntos
Antígenos HLA-DP/genética , Antígenos de Superfície da Hepatite B/sangue , Hepatite B Crônica/sangue , Hepatite B Crônica/genética , Interleucinas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , DNA Viral/sangue , Epistasia Genética , Feminino , Estudos de Associação Genética , Genoma Humano , Haplótipos , Anticorpos Anti-Hepatite B/sangue , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Interações Hospedeiro-Patógeno , Humanos , Interferons , Masculino , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único , Carga Viral
15.
Int Psychogeriatr ; 25(7): 1157-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23597130

RESUMO

BACKGROUND: Olfactory dysfunction, impaired smell identification in particular, is known as a diagnostic and a marker of conversion in Alzheimer's disease (AD). We aimed to evaluate the associations of olfactory identification impairments with cognition, illness severity, and progression in AD patients. METHODS: Fifty-seven outpatients with late onset mild to moderate AD and 24 elderly non-demented controls (NDC) were assessed, at baseline and after three months, for Mini-Mental State Examination (MMSE), University of Pennsylvania Smell Identification Test (UPSIT), and Bristol Activities of Daily Living and Neuropsychiatry Inventory. AD participants were classified as Rapid Cognitive Decliners (RCD) defined on a priori with a loss of ≥2 points in MMSE within the previous six months. RESULTS: AD participants had lower olfactory scores than NDC. RCD had lower olfaction scores compared with Non-Rapid Cognitive Decliners (NRCD). Although the baseline UPSIT scores were associated with baseline MMSE scores, it did not interact significantly with change in MMSE over the follow-up period. Using a median split for olfactory scores, the AD participants were classified as Rapid Olfactory Progressors (ROP) (UPSIT ≤ 15) and Slow Olfactory Progressors correlating significantly with RCD/NRCD groups. The ROP group with higher olfactory impairment indicated more symptomatic illness or severity, i.e. lower cognition, higher functional dependence, and presence of behavioral symptoms. CONCLUSIONS: Our study supports association of smell identification function with cognition and its utility as an adjunct clinical measure to assess severity in AD. Further work, including larger longitudinal studies, is needed to explore its value in predicting AD progression.


Assuntos
Doença de Alzheimer/fisiopatologia , Cognição , Transtornos do Olfato/fisiopatologia , Olfato , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Biomarcadores/análise , Estudos de Casos e Controles , Inibidores da Colinesterase/uso terapêutico , Progressão da Doença , Feminino , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Testes Neuropsicológicos , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/etiologia , Índice de Gravidade de Doença , Fatores Socioeconômicos
16.
Alzheimers Res Ther ; 15(1): 38, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814324

RESUMO

BACKGROUND: Identifying blood-based signatures of brain health and preclinical pathology may offer insights into early disease mechanisms and highlight avenues for intervention. Here, we systematically profiled associations between blood metabolites and whole-brain volume, hippocampal volume, and amyloid-ß status among participants of Insight 46-the neuroscience sub-study of the National Survey of Health and Development (NSHD). We additionally explored whether key metabolites were associated with polygenic risk for Alzheimer's disease (AD). METHODS: Following quality control, levels of 1019 metabolites-detected with liquid chromatography-mass spectrometry-were available for 1740 participants at age 60-64. Metabolite data were subsequently clustered into modules of co-expressed metabolites using weighted coexpression network analysis. Accompanying MRI and amyloid-PET imaging data were present for 437 participants (age 69-71). Regression analyses tested relationships between metabolite measures-modules and hub metabolites-and imaging outcomes. Hub metabolites were defined as metabolites that were highly connected within significant (pFDR < 0.05) modules or were identified as a hub in a previous analysis on cognitive function in the same cohort. Regression models included adjustments for age, sex, APOE genotype, lipid medication use, childhood cognitive ability, and social factors. Finally, associations were tested between AD polygenic risk scores (PRS), including and excluding the APOE region, and metabolites and modules that significantly associated (pFDR < 0.05) with an imaging outcome (N = 1638). RESULTS: In the fully adjusted model, three lipid modules were associated with a brain volume measure (pFDR < 0.05): one enriched in sphingolipids (hippocampal volume: ß = 0.14, 95% CI = [0.055,0.23]), one in several fatty acid pathways (whole-brain volume: ß = - 0.072, 95%CI = [- 0.12, - 0.026]), and another in diacylglycerols and phosphatidylethanolamines (whole-brain volume: ß = - 0.066, 95% CI = [- 0.11, - 0.020]). Twenty-two hub metabolites were associated (pFDR < 0.05) with an imaging outcome (whole-brain volume: 22; hippocampal volume: 4). Some nominal associations were reported for amyloid-ß, and with an AD PRS in our genetic analysis, but none survived multiple testing correction. CONCLUSIONS: Our findings highlight key metabolites, with functions in membrane integrity and cell signalling, that associated with structural brain measures in later life. Future research should focus on replicating this work and interrogating causality.


Assuntos
Doença de Alzheimer , Idoso , Humanos , Pessoa de Meia-Idade , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Lipídeos , Neuroimagem , Fatores de Risco
17.
Brain Commun ; 4(1): fcab291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187482

RESUMO

Investigating associations between metabolites and late midlife cognitive function could reveal potential markers and mechanisms relevant to early dementia. Here, we systematically explored the metabolic correlates of cognitive outcomes measured across the seventh decade of life, while untangling influencing life course factors. Using levels of 1019 metabolites profiled by liquid chromatography-mass spectrometry (age 60-64), we evaluated relationships between metabolites and cognitive outcomes in the British 1946 Birth Cohort (N = 1740). We additionally conducted pathway and network analyses to allow for greater insight into potential mechanisms, and sequentially adjusted for life course factors across four models, including sex and blood collection (Model 1), Model 1 + body mass index and lipid medication (Model 2), Model 2 + social factors and childhood cognition (Model 3) and Model 3 + lifestyle influences (Model 4). After adjusting for multiple tests, 155 metabolites, 10 pathways and 5 network modules were associated with cognitive outcomes. Of the 155, 35 metabolites were highly connected in their network module (termed 'hub' metabolites), presenting as promising marker candidates. Notably, we report relationships between a module comprised of acylcarnitines and processing speed which remained robust to life course adjustment, revealing palmitoylcarnitine (C16) as a hub (Model 4: ß = -0.10, 95% confidence interval = -0.15 to -0.052, P = 5.99 × 10-5). Most associations were sensitive to adjustment for social factors and childhood cognition; in the final model, four metabolites remained after multiple testing correction, and 80 at P < 0.05. Two modules demonstrated associations that were partly or largely attenuated by life course factors: one enriched in modified nucleosides and amino acids (overall attenuation = 39.2-55.5%), and another in vitamin A and C metabolites (overall attenuation = 68.6-92.6%). Our other findings, including a module enriched in sphingolipid pathways, were entirely explained by life course factors, particularly childhood cognition and education. Using a large birth cohort study with information across the life course, we highlighted potential metabolic mechanisms associated with cognitive function in late midlife, suggesting marker candidates and life course relationships for further study.

18.
Biol Psychiatry Glob Open Sci ; 2(2): 167-179, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36325159

RESUMO

Background: Education and cognition demonstrate consistent inverse associations with Alzheimer's disease (AD). The biological underpinnings, however, remain unclear. Blood metabolites reflect the end point of biological processes and are accessible and malleable. Identifying metabolites with etiological relevance to AD and disentangling how these relate to cognitive factors along the AD causal pathway could, therefore, offer unique insights into underlying causal mechanisms. Methods: Using data from the largest metabolomics genome-wide association study (N ≈ 24,925) and three independent AD cohorts (N = 4725), cross-trait polygenic scores were generated and meta-analyzed. Metabolites genetically associated with AD were taken forward for causal analyses. Bidirectional two-sample Mendelian randomization interrogated univariable causal relationships between 1) metabolites and AD; 2) education and cognition; 3) metabolites, education, and cognition; and 4) education, cognition, and AD. Mediating relationships were computed using multivariable Mendelian randomization. Results: Thirty-four metabolites were genetically associated with AD at p < .05. Of these, glutamine and free cholesterol in extra-large high-density lipoproteins demonstrated a protective causal effect (glutamine: 95% confidence interval [CI], 0.70 to 0.92; free cholesterol in extra-large high-density lipoproteins: 95% CI, 0.75 to 0.92). An AD-protective effect was also observed for education (95% CI, 0.61 to 0.85) and cognition (95% CI, 0.60 to 0.89), with bidirectional mediation evident. Cognition as a mediator of the education-AD relationship was stronger than vice versa, however. No evidence of mediation via any metabolite was found. Conclusions: Glutamine and free cholesterol in extra-large high-density lipoproteins show protective causal effects on AD. Education and cognition also demonstrate protection, though education's effect is almost entirely mediated by cognition. These insights provide key pieces of the AD causal puzzle, important for informing future multimodal work and progressing toward effective intervention strategies.

19.
Hum Mol Genet ; 18(3): 472-81, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18996918

RESUMO

Amyotrophic lateral sclerosis (ALS) is a spontaneous, relentlessly progressive motor neuron disease, usually resulting in death from respiratory failure within 3 years. Variation in the genes SOD1 and TARDBP accounts for a small percentage of cases, and other genes have shown association in both candidate gene and genome-wide studies, but the genetic causes remain largely unknown. We have performed two independent parallel studies, both implicating the RNA polymerase II component, ELP3, in axonal biology and neuronal degeneration. In the first, an association study of 1884 microsatellite markers, allelic variants of ELP3 were associated with ALS in three human populations comprising 1483 people (P=1.96 x 10(-9)). In the second, an independent mutagenesis screen in Drosophila for genes important in neuronal communication and survival identified two different loss of function mutations, both in ELP3 (R475K and R456K). Furthermore, knock down of ELP3 protein levels using antisense morpholinos in zebrafish embryos resulted in dose-dependent motor axonal abnormalities [Pearson correlation: -0.49, P=1.83 x 10(-12) (start codon morpholino) and -0.46, P=4.05 x 10(-9) (splice-site morpholino), and in humans, risk-associated ELP3 genotypes correlated with reduced brain ELP3 expression (P=0.01). These findings add to the growing body of evidence implicating the RNA processing pathway in neurodegeneration and suggest a critical role for ELP3 in neuron biology and of ELP3 variants in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Variação Genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , População Branca/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
20.
Am J Med Genet B Neuropsychiatr Genet ; 156B(7): 764-71, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21812096

RESUMO

We sought to investigate the contribution of extended runs of homozygosity in a genome-wide association dataset of 1,955 Alzheimer's disease cases and 955 elderly screened controls genotyped for 529,205 autosomal single nucleotide polymorphisms. Tracts of homozygosity may mark regions inherited from a common ancestor and could reflect disease loci if observed more frequently in cases than controls. We found no excess of homozygous tracts in Alzheimer's disease cases compared to controls and no individual run of homozygosity showed association to Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Homozigoto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Cromossomos Humanos Par 8/genética , Feminino , Genes/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA