Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609206

RESUMO

Animals adapt to varying environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here we find that thyroid hormone- a prominent regulator of metabolism in many peripheral organs- activates cell-type specific transcriptional programs in anterior regions of cortex of adult mice via direct activation of thyroid hormone receptors. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulators across both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread remodeling of cortical circuits. Indeed, whole-cell electrophysiology recordings revealed that thyroid hormone induces local transcriptional programs that rewire cortical neural circuits via pre-synaptic mechanisms, resulting in increased excitatory drive with a concomitant sensitization of recruited inhibition. We find that thyroid hormone bidirectionally regulates innate exploratory behaviors and that the transcriptionally mediated circuit changes in anterior cortex causally promote exploratory decision-making. Thus, thyroid hormone acts directly on adult cerebral cortex to coordinate exploratory behaviors with whole-body metabolic state.

2.
J R Soc Interface ; 12(103)2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25519993

RESUMO

Integration of engineered musculoskeletal tissues with adjacent native tissues presents a significant challenge to the field. Specifically, the avascularity and low cellularity of cartilage elicit the need for additional efforts in improving integration of neocartilage within native cartilage. Self-assembled neocartilage holds significant potential in replacing degenerated cartilage, though its stabilization and integration in native cartilage require further efforts. Physical and enzymatic stabilization methods were investigated in an in vitro model for temporomandibular joint (TMJ) disc degeneration. First, in phase 1, suture, glue and press-fit constructs were compared in TMJ disc intermediate zone defects. In phase 1, suturing enhanced interfacial shear stiffness and strength immediately; after four weeks, a 15-fold increase in stiffness and a ninefold increase in strength persisted over press-fit. Neither suture nor glue significantly altered neocartilage properties. In phase 2, the effects of the enzymatic stabilization regimen composed of lysyl oxidase, CuSO4 and hydroxylysine were investigated. A full factorial design was employed, carrying forward the best physical method from phase 1, suturing. Enzymatic stabilization significantly increased interfacial shear stiffness after eight weeks. Combined enzymatic stabilization and suturing led to a fourfold increase in shear stiffness and threefold increase in strength over press-fit. Histological analysis confirmed the presence of a collagen-rich interface. Enzymatic treatment additionally enhanced neocartilage mechanical properties, yielding a tensile modulus over 6 MPa and compressive instantaneous modulus over 1200 kPa at eight weeks. Suturing enhances stabilization of neocartilage, and enzymatic treatment enhances functional properties and integration of neocartilage in the TMJ disc. Methods developed here are applicable to other orthopaedic soft tissues, including knee meniscus and hyaline articular cartilage.


Assuntos
Fibrocartilagem , Cartilagem Hialina/enzimologia , Proteína-Lisina 6-Oxidase/metabolismo , Disco da Articulação Temporomandibular , Transtornos da Articulação Temporomandibular , Animais , Fibrocartilagem/enzimologia , Fibrocartilagem/patologia , Fibrocartilagem/fisiopatologia , Cartilagem Hialina/patologia , Cartilagem Hialina/fisiopatologia , Sus scrofa , Disco da Articulação Temporomandibular/enzimologia , Disco da Articulação Temporomandibular/patologia , Disco da Articulação Temporomandibular/fisiopatologia , Transtornos da Articulação Temporomandibular/enzimologia , Transtornos da Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/fisiopatologia , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA