Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Respir Crit Care Med ; 209(11): 1376-1391, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261723

RESUMO

Rationale: The ubiquitous polyamine spermidine is essential for cell survival and proliferation. One important function of spermidine is to serve as a substrate for hypusination, a posttranslational modification process that occurs exclusively on eukaryotic translation factor 5A (eIF5A) and ensures efficient translation of various gene products. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive obliteration of the small pulmonary arteries (PAs) caused by excessive proliferation of PA smooth muscle cells (PASMCs) and suppressed apoptosis. Objectives: To characterize the role of hypusine signaling in PAH. Methods: Molecular, genetic, and pharmacological approaches were used both in vitro and in vivo to investigate the role of hypusine signaling in pulmonary vascular remodeling. Measurements and Main Results: Hypusine forming enzymes-deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH)-and hypusinated eukaryotic translation factor 5A are overexpressed in distal PAs and isolated PASMCs from PAH patients and animal models. In vitro, inhibition of DHPS using N1-guanyl-1,7-diaminoheptane or shRNA resulted in a decrease in PAH-PASMC resistance to apoptosis and proliferation. In vivo, inactivation of one allele of Dhps targeted to smooth muscle cells alleviates PAH in mice, and its pharmacological inhibition significantly decreases pulmonary vascular remodeling and improves hemodynamics and cardiac function in two rat models of established PAH. With mass spectrometry, hypusine signaling is shown to promote the expression of a broad array of proteins involved in oxidative phosphorylation, thus supporting the bioenergetic requirements of cell survival and proliferation. Conclusions: These findings support inhibiting hypusine signaling as a potential treatment for PAH.


Assuntos
Hipertensão Arterial Pulmonar , Transdução de Sinais , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Ratos , Humanos , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Masculino , Modelos Animais de Doenças , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/efeitos dos fármacos , Camundongos , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Proliferação de Células/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Lisina/análogos & derivados
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125620

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models. Additionally, we examined the overexpression of miR-146a on human pulmonary artery smooth muscle cells (hPASMCs). Here, we showed that miR-146a genic expression was increased in the lungs of patients with PAH and the plasma of monocrotaline (MCT) rats. Interestingly, genetic ablation of miR-146a improved RV hypertrophy and systolic pressures in Sugen 5415/hypoxia (SuHx) and pulmonary arterial banding (PAB) mice. Pharmacological inhibition of miR-146a improved RV remodeling in PAB-wild type mice and MCT rats, and enhanced exercise capacity in MCT rats. However, overexpression of miR-146a did not affect proliferation, migration, and apoptosis in control-hPASMCs. Our findings show that miR-146a may play a significant role in RV function and remodeling, representing a promising therapeutic target for RV hypertrophy and, consequently, PAH.


Assuntos
MicroRNAs , Hipertensão Arterial Pulmonar , Artéria Pulmonar , Função Ventricular Direita , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Humanos , Camundongos , Masculino , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Modelos Animais de Doenças , Monocrotalina , Proliferação de Células/genética , Miócitos de Músculo Liso/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/metabolismo , Remodelação Vascular/genética , Ratos Sprague-Dawley
4.
Chest ; 165(3): 682-691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461018

RESUMO

Pulmonary arterial hypertension (PAH) and pulmonary hypertension associated with left-sided heart and lung diseases are most commonly easily discriminated and treated accordingly. With the changing epidemiology of PAH, however, a growing proportion of patients at the time of diagnosis present with comorbidities of varying severity. In addition to classical PAH, two distinct phenotypes have emerged: a heart failure with preserved ejection fraction-like phenotype and a lung phenotype. Importantly, the evidence supporting the currently proposed treatment algorithm for PAH has been generated mainly from PAH trials in which patients with cardiopulmonary comorbidities have been underrepresented or excluded. As a consequence, the best therapeutic approach for patients with common PAH with cardiopulmonary comorbidities remains largely unknown and requires further investigation. The present article reviews the relevant literature on the topic and describes the authors' views on the current therapeutic approach for these patients.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/epidemiologia , Hipertensão Arterial Pulmonar/terapia , Hipertensão Arterial Pulmonar/complicações , Hipertensão Pulmonar/epidemiologia , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar Primária Familiar/complicações , Cardiopatias/complicações , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/terapia
5.
Biomed Pharmacother ; 171: 116055, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171239

RESUMO

BACKGROUND: During the first wave of COVID-19, hydroxychloroquine (HCQ) was used off-label despite the absence of evidence documenting its clinical benefits. Since then, a meta-analysis of randomised trials showed that HCQ use was associated with an 11% increase in the mortality rate. We aimed to estimate the number of HCQ-related deaths worldwide. METHODS AND FINDINGS: We estimated the worldwide in-hospital mortality attributable to HCQ use by combining the mortality rate, HCQ exposure, number of hospitalised patients, and the increased relative risk of death with HCQ. The mortality rate in hospitalised patients for each country was calculated using pooled prevalence estimated by a meta-analysis of published cohorts. The HCQ exposure was estimated using median and extreme estimates from the same systematic review. The number of hospitalised patients during the first wave was extracted from dedicated databases. The systematic review included 44 cohort studies (Belgium: k = 1, France: k = 2, Italy: k = 12, Spain: k = 6, Turkey: k = 3, USA: k = 20). HCQ prescription rates varied greatly from one country to another (range 16-84%). Overall, using median estimates of HCQ use in each country, we estimated that 16,990 HCQ-related in-hospital deaths (range 6267-19256) occurred in the countries with available data. The median number of HCQ-related deaths in Belgium, Turkey, France, Italy, Spain, and the USA was 240 (range not estimable), 95 (range 92-128), 199 (range not estimable), 1822 (range 1170-2063), 1895 (range 1475-2094) and 12739 (3244- 15570), respectively. CONCLUSIONS: Although our estimates are limited by their imprecision, these findings illustrate the hazard of drug repurposing with low-level evidence.


Assuntos
Tratamento Farmacológico da COVID-19 , Mortalidade Hospitalar , Hidroxicloroquina , Hidroxicloroquina/uso terapêutico , Hidroxicloroquina/efeitos adversos , Humanos , Ensaios de Uso Compassivo , COVID-19/mortalidade , COVID-19/epidemiologia , SARS-CoV-2
6.
J Am Heart Assoc ; 13(12): e032888, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38874078

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) ultimately leads to right ventricular failure and premature death. The identification of circulating biomarkers with prognostic utility is considered a priority. As chronic inflammation is recognized as key pathogenic driver, we sought to identify inflammation-related circulating proteins that add incremental value to current risk stratification models for long-term survival in patients with PAH. METHODS AND RESULTS: Plasma levels of 384 inflammatory proteins were measured with the proximity extension assay technology in patients with PAH (n=60) and controls with normal hemodynamics (n=28). Among these, 51 analytes were significantly overexpressed in the plasma of patients with PAH compared with controls. Cox proportional hazard analyses and C-statistics were performed to assess the prognostic value and the incremental prognostic value of differentially expressed proteins. A panel of 6 proteins (CRIM1 [cysteine rich transmembrane bone morphogenetic protein regulator 1], HGF [hepatocyte growth factor], FSTL3 [follistatin-like 3], PLAUR [plasminogen activator, urokinase receptor], CLSTN2 [calsyntenin 2], SPON1 [spondin 1]) were independently associated with death/lung transplantation at the time of PAH diagnosis after adjustment for the 2015 European Society of Cardiology/European Respiratory Society guidelines, the REVEAL (Registry to Evaluate Early and Long-Term PAH Disease Management) 2.0 risk scores, and the refined 4-strata risk assessment. CRIM1, PLAUR, FSTL3, and SPON1 showed incremental prognostic value on top of the predictive models. As determined by Western blot, FSTL3 and SPON1 were significantly upregulated in the right ventricle of patients with PAH and animal models (monocrotaline-injected and pulmonary artery banding-subjected rats). CONCLUSIONS: In addition to revealing new actors likely involved in cardiopulmonary remodeling in PAH, our screening identified promising circulating biomarkers to improve risk prediction in PAH, which should be externally confirmed.


Assuntos
Biomarcadores , Proteômica , Hipertensão Arterial Pulmonar , Humanos , Masculino , Feminino , Biomarcadores/sangue , Proteômica/métodos , Pessoa de Meia-Idade , Prognóstico , Hipertensão Arterial Pulmonar/sangue , Hipertensão Arterial Pulmonar/mortalidade , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/fisiopatologia , Adulto , Animais , Medição de Risco , Estudos de Casos e Controles , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Proteínas Relacionadas à Folistatina/sangue , Modelos Animais de Doenças , Valor Preditivo dos Testes , Inflamação/sangue , Mediadores da Inflamação/sangue , Fatores de Risco , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/sangue , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Artéria Pulmonar/fisiopatologia
7.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746200

RESUMO

Background: Pulmonary hypertension (PH)-induced right ventricular (RV) failure (PH-RVF) is a significant prognostic determinant of mortality and is characterized by RV hypertrophy, endothelial-to-mesenchymal transition (EndMT), fibroblast-to-myofibroblast transition (FMT), fibrosis, and extracellular matrix (ECM)-remodeling. Despite the importance of RV function in PH, the mechanistic details of PH-RVF, especially the regulatory control of RV EndMT, FMT, and fibrosis, remain unclear. The action of transcription factor Snai1 is shown to be mediated through LOXL2 recruitment, and their co-translocation to the nucleus, during EndMT progression. We hypothesize that RV EndMT and fibrosis in PH-RVF are governed by the TGFß1-Snai1-LOXL2 axis. Furthermore, targeting Snai1 could serve as a novel therapeutic strategy for PH-RVF. Methods: Adult male Sprague Dawley rats (250-300g) received either a single subcutaneous injection of Monocrotaline (MCT, 60mg/kg, n=9; followed for 30-days) or Sugen (SU5416 20mg/kg, n=9; 10% O 2 hypoxia for 3-weeks followed by normoxia for 2-weeks) or PBS (CTRL, n=9). We performed secondary bioinformatics analysis on the RV bulk RNA-Seq data from MCT, SuHx, and PAB rats and human PH-PVF. We validated EndMT and FMT and their association with Snai1 and LOXL2 in the RVs of MCT and SuHx rat models and human PH-RVF using immunofluorescence, qPCR, and Western blots. For in vivo Snai1 knockdown (Snai1-KD), MCT-rats either received Snai1-siRNA (n=7; 5nM/injection every 3-4 days; 4-injections) or scramble (SCRM-KD; n=7) through tail vein from day 14-30 after MCT. Echocardiography and catheterization were performed terminally. Bulk RNASeq and differential expression analysis were performed on Snai1- and SCRM-KD rat RVs. In vitro Snai1-KD was performed on human coronary artery endothelial cells (HCAECs) and human cardiac fibroblasts (HCFs) under hypoxia+TGFß1 for 72-hrs. Results: PH-RVF had increased RVSP and Fulton index and decreased RV fractional area change (RVFAC %). RV RNASeq demonstrated EndMT as the common top-upregulated pathway between rat (MCT, SuHx, and PAB) and human PH-RVF. Immunofluorescence using EndMT- and FMT-specific markers demonstrated increased EndMT and FMT in RV of MCT and SuHx rats and PH-RVF patients. Further, RV expression of TGFß1, Snai1, and LOXL2 was increased in MCT and SuHx. Nuclear co-localization and increased immunoreactivity, transcript, and protein levels of Snai1 and LOXL2 were observed in MCT and SuHx rats and human RVs. MCT rats treated with Snai1-siRNA demonstrated decreased Snai1 expression, RVSP, Fulton index, and increased RVFAC. Snai1-KD resulted in decreased RV-EndMT, FMT, and fibrosis via a LOXL2-dependent manner. Further, Snai1-KD inhibited hypoxia+TGFß1-induced EndMT in HCAECs and FMT in HCFs in vitro by decreasing perinuclear/nuclear Snai1+LOXL2 expression and co-localization. Conclusions: RV-specific targeting of Snai1 rescues PH-RVF by inhibiting EndMT and Fibrosis via a LOXL2-mediated mechanism.

8.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854025

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PA) and progressive increase in pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Although several drugs are approved for the treatment of PAH, mortality remains high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets. However, their role in PAH remains largely unexplored. We found that the arginine-glycine-aspartate (RGD)-binding integrin α5ß1 is upregulated in PA endothelial cells (PAEC) and PA smooth muscle cells (PASMC) from PAH patients and remodeled PAs from animal models. Blockade of the integrin α5ß1 or depletion of the α5 subunit resulted in mitotic defects and inhibition of the pro-proliferative and apoptosis-resistant phenotype of PAH cells. Using a novel small molecule integrin inhibitor and neutralizing antibodies, we demonstrated that α5ß1 integrin blockade attenuates pulmonary vascular remodeling and improves hemodynamics and RV function in multiple preclinical models. Our results provide converging evidence to consider α5ß1 integrin inhibition as a promising therapy for pulmonary hypertension. One sentence summary: The α5ß1 integrin plays a crucial role in pulmonary vascular remodeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA