Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Am Chem Soc ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980064

RESUMO

Addressing the global challenge of bacterial resistance demands innovative approaches, among which multitargeting is a widely used strategy. Current strategies of multitargeting, typically achieved through drug combinations or single agents inherently aiming at multiple targets, face challenges such as stringent pharmacokinetic and pharmacodynamic requirements and cytotoxicity concerns. In this report, we propose a bacterial-specific global disruption approach as a vastly expanded multitargeting strategy that effectively disrupts bacterial subcellular organization. This effect is achieved through a pioneering chemical design of ligand-receptor interaction-induced aggregation of small molecules, i.e., DNA-induced aggregation of a diarginine peptidomimetic within bacterial cells. These intracellular aggregates display affinity toward various proteins and thus substantially interfere with essential bacterial functions and rupture bacterial cell membranes in an "inside-out" manner, leading to robust antibacterial activities and suppression of drug resistance. Additionally, biochemical analysis of macromolecule binding affinity, cytoplasmic localization patterns, and bacterial stress responses suggests that this bacterial-specific intracellular aggregation mechanism is fundamentally different from nonselective classic DNA or membrane binding mechanisms. These mechanistic distinctions, along with the peptidomimetic's selective permeation of bacterial membranes, contribute to its favorable biocompatibility and pharmacokinetic properties, enabling its in vivo antimicrobial efficacy in several animal models, including mice-based superficial wound models, subcutaneous abscess models, and septicemia infection models. These results highlight the great promise of ligand-receptor interaction-induced intracellular aggregation in achieving a globally disruptive multitargeting effect, thereby offering potential applications in the treatment of malignant cells, including pathogens, tumor cells, and infected tissues.

2.
Bioorg Chem ; 144: 107163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306825

RESUMO

The development of effective antibacterial drugs to combat bacterial infections, particularly the biofilm-related infections, remains a challenge. There are two important features of bacterial biofilms, which are well-known critical factors causing biofilms hard-to-treat in clinical, including the dense and impermeable extracellular polymeric substances (EPS) and the metabolically repressed dormant and persistent bacterial population embedded. These characteristics largely increase the difficulty for regular antibiotic treatment due to insufficient penetration into EPS. In addition, the dormant bacteria are insensitive to the growth-inhibiting mechanism of traditional antibiotics. Herein, we explore the potential of a series of new oligopyridinium-based oligomers bearing a multi-biomacromolecule targeting function as the potent bacterial biofilm eradication agent. These oligomers were rationally designed to be "charge-on-backbone" that can offer a special alternating amphiphilicity. This novel and unique feature endows high affinity to bacterial membrane lipids, DNAs as well as proteins. Such a broad multi-targeting nature of molecules not only enables its penetration into EPS, but also plays vital roles in the bactericidal mechanism of action that is highly effective against dormant and persistent bacteria. Our in vitro, ex vivo, and in vivo studies demonstrated that OPc3, one of the most effective derivatives, was able to offer excellent antibacterial potency against a variety of bacteria and effectively eliminate biofilms in zebrafish models and mouse wound biofilm infection models.


Assuntos
Infecções Bacterianas , Peixe-Zebra , Animais , Camundongos , Biofilmes , Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia
3.
J Am Chem Soc ; 145(42): 23372-23384, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37838963

RESUMO

Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Bactérias , Biologia , Testes de Sensibilidade Microbiana
4.
Cell Mol Neurobiol ; 43(1): 155-175, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35032275

RESUMO

Phosphorylation of N-methyl-D-aspartate receptor (NMDAR) is widely regarded as a vital modification of synaptic function. Various protein kinases are responsible for direct phosphorylation of NMDAR, such as cyclic adenosine monophosphate-dependent protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src family protein tyrosine kinases, cyclin-dependent kinase 5, and casein kinase II. The detailed function of these kinases on distinct subunits of NMDAR has been reported previously and contributes to phosphorylation at sites predominately within the C-terminal of NMDAR. Phosphorylation underlies both structural and functional changes observed in chronic pain, and studies have demonstrated that inhibitors of kinases are significantly effective in alleviating pain behavior in different chronic pain models. In addition, the exploration of drugs that aim to disrupt the interaction between kinases and NMDAR is promising in clinical research. Based on research regarding the modulation of NMDAR in chronic pain models, this review provides an overview of the phosphorylation of NMDAR-related mechanisms underlying chronic pain to elucidate molecular and pharmacologic references for chronic pain management.


Assuntos
Dor Crônica , Receptores de N-Metil-D-Aspartato , Humanos , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo , Dor Crônica/tratamento farmacológico , Quinases da Família src/metabolismo , Proteína Quinase C/metabolismo
5.
Opt Express ; 26(18): 23233-23250, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184978

RESUMO

Cone beam X-ray luminescence computed tomography (CB-XLCT) has been proposed as a promising hybrid imaging technique. Though it has the advantage of fast imaging, the inverse problem of CB-XLCT is seriously ill-conditioned, making the image quality quite poor, especially for imaging multi-targets. To achieve fast imaging of multi-targets, which is essential for in vivo applications, a truncated singular value decomposition (TSVD) based sparse view CB-XLCT reconstruction method is proposed in this study. With the weight matrix of the CB-XLCT system being converted to orthogonal by TSVD, the compressed sensing (CS) based L1-norm method could be applied for fast reconstruction from fewer projection views. Numerical simulations and phantom experiments demonstrate that by using the proposed method, two targets with different edge-to-edge distances (EEDs) could be resolved effectively. It indicates that the proposed method could improve the imaging quality of multi-targets significantly in terms of localization accuracy, target shape, image contrast, and spatial resolution, when compared with conventional methods.

6.
Appl Opt ; 55(18): 4843-9, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27409108

RESUMO

Fluorescence molecular tomography (FMT) can visualize biological activities at cellular and molecular levels in vivo, and has been extensively used in drug delivery and tumor detection research of small animals. The ill-posedness of the FMT inverse problem makes it difficult to reconstruct and unmix multiple adjacent fluorescent targets that have different functional features but are labeled with the same fluorochrome. A method based on independent component analysis for multispectral excited FMT was proposed in our previous study. It showed that double fluorescent targets with certain edge-to-edge distance (EED) could be unmixed by the method. In this study, the situation is promoted to unmix multiple adjacent fluorescent targets (i.e., more than two fluorescent targets and EED=0). Phantom experiments on the resolving ability of the proposed algorithm demonstrate that the algorithm performs well in unmixing multiple adjacent fluorescent targets in both lateral and axial directions. And also, we recovered the locational information of each independent fluorescent target and described the variable trends of the corresponding fluorescent targets under the excitation spectrum. This method is capable of unmixing multiple fluorescent targets with small EED but labeled with the same fluorochrome, and may be used in imaging of nonspecific probe targeting and metabolism of drugs.


Assuntos
Tomografia/métodos , Processamento de Imagem Assistida por Computador , Verde de Indocianina/química , Imagens de Fantasmas , Espectrometria de Fluorescência
7.
Appl Opt ; 53(3): 402-9, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24514125

RESUMO

Subsurface fluorescence molecular tomography (FMT) is an emerging technique determining fluorescence distribution by tomographic means in reflectance geometry. However, due to the highly diffusive nature of the photon propagation in biological tissues and the influence of nearer source-detector separations, stand-alone subsurface FMT could not accurately reflect the fluorophore distributions. To overcome this drawback, we propose a method to improve the performance of fluorescence imaging by coupling x-ray computed tomography (XCT) and subsurface FMT modalities. A Laplacian-type regularization matrix generated with tissue prior information obtained from XCT images is used to guide the reconstruction of fluorophore distribution. Reconstruction results of both simulation and phantom studies showed that significant improvements in localization and demarcation of fluorescent targets can be obtained with the proposed method compared to the reconstruction method without structural prior information.


Assuntos
Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Luz , Imagens de Fantasmas , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
8.
Bioengineering (Basel) ; 11(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38391609

RESUMO

Single-view cone-beam X-ray luminescence computed tomography (CB-XLCT) has recently gained attention as a highly promising imaging technique that allows for the efficient and rapid three-dimensional visualization of nanophosphor (NP) distributions in small animals. However, the reconstruction performance is hindered by the ill-posed nature of the inverse problem and the effects of depth variation as only a single view is acquired. To tackle this issue, we present a methodology that integrates an automated restarting strategy with depth compensation to achieve reconstruction. The present study employs a fast proximal gradient descent (FPGD) method, incorporating L0 norm regularization, to achieve efficient reconstruction with accelerated convergence. The proposed approach offers the benefit of retrieving neighboring multitarget distributions without the need for CT priors. Additionally, the automated restarting strategy ensures reliable reconstructions without the need for manual intervention. Numerical simulations and physical phantom experiments were conducted using a custom CB-XLCT system to demonstrate the accuracy of the proposed method in resolving adjacent NPs. The results showed that this method had the lowest relative error compared to other few-view techniques. This study signifies a significant progression in the development of practical single-view CB-XLCT for high-resolution 3-D biomedical imaging.

9.
Technol Cancer Res Treat ; 21: 15330338221086395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296195

RESUMO

Objectives: Regional bladder wall thickening on noninvasive magnetic resonance (MR) images is an important sign of developing urinary bladder cancer (BCa), and precise segmentation of the tumor mass is an essential step toward noninvasive identification of the pathological stage and grade, which is of critical importance for the clinical management of patients with BCa. Methods: In this paper, we proposed a new method based on the high-throughput pixel-level features and a random forest (RF) classifier for the BCa segmentation. First, regions of interest (ROIs) including tumor and wall ROIs were used in the training set for feature extraction and segmentation model development. Then, candidate regions containing both bladder tumor and its neighboring wall tissue in the testing set were segmented. Results: Experimental results were evaluated on a retrospective database containing 56 patients postoperatively confirmed with BCa from the affiliated hospital. The Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD) of the tumor regions were adopted to quantitatively assess the overall performance of this approach. The results showed that the mean DSC was 0.906 (95% confidential interval [CI]: 0.852-0.959), and the mean ASSD was 1.190 mm (95% CI: 1.727-2.449), which were higher than those of the state-of-the-art methods for tumor region separation. Conclusion: The proposed Pixel-level BCa segmentation method can achieve good performance for the accurate segmentation of BCa lesion on MR images.


Assuntos
Neoplasias da Bexiga Urinária , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Estudos Retrospectivos , Bexiga Urinária , Neoplasias da Bexiga Urinária/diagnóstico por imagem
10.
ACS Chem Biol ; 17(11): 3178-3190, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36269311

RESUMO

Most Gram-positive-selective antibiotics have low activity against Gram-negative bacteria due to the presence of an outer membrane barrier. There is, therefore, interest in developing combination therapies that can penetrate the outer membrane (OM) with known antibiotics coupled with membrane-active sensitizing adjuvants. However, two unanswered questions hinder the development of such combination therapies: the sensitization spectrum of the sensitizer and the mechanism of antibiotic-sensitizer mutual potentiation. Here, with pentamidine as an example, we screened a library of 170 FDA-approved antibiotics in combination with pentamidine, a compound known to disturb the OM of Gram-negative bacteria. We found that four antibiotics, minocycline, linezolid, valnemulin, and nadifloxacin, displaced enhanced activity in combination with pentamidine against several multidrug-resistant Gram-negative bacteria. Through a descriptor-based structural-activity analysis and multiple cell-based biochemical assays, we found that hydrophobicity, partial charge, rigidity, and surface rugosity were key factors that affected sensitization via a cooperative membrane damage mechanism in which lipopolysaccharides and phospholipids were identified as sites of synergy. Finally, in vitro experiments showed that the linezolid-pentamidine combination slowed the generation of drug resistance, and there was also potent activity in in vivo experiments. Overall, our results highlight the importance of the physicochemical properties of antibiotics and cooperative membrane damage for synergistic pentamidine-antibiotic drug combinations.


Assuntos
Antibacterianos , Pentamidina , Antibacterianos/farmacologia , Antibacterianos/química , Pentamidina/farmacologia , Linezolida/farmacologia , Bactérias Gram-Negativas , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
11.
Front Pharmacol ; 13: 897597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833032

RESUMO

Objectives: We aimed to identify whether ensemble learning can improve the performance of the epidermal growth factor receptor (EGFR) mutation status predicting model. Methods: We retrospectively collected 168 patients with non-small cell lung cancer (NSCLC), who underwent both computed tomography (CT) examination and EGFR test. Using the radiomics features extracted from the CT images, an ensemble model was established with four individual classifiers: logistic regression (LR), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost). The synthetic minority oversampling technique (SMOTE) was also used to decrease the influence of data imbalance. The performances of the predicting model were evaluated using the area under the curve (AUC). Results: Based on the 26 radiomics features after feature selection, the SVM performed best (AUCs of 0.8634 and 0.7885 on the training and test sets, respectively) among four individual classifiers. The ensemble model of RF, XGBoost, and LR achieved the best performance (AUCs of 0.8465 and 0.8654 on the training and test sets, respectively). Conclusion: Ensemble learning can improve the model performance in predicting the EGFR mutation status of patients with NSCLC, showing potential value in clinical practice.

12.
Adv Healthc Mater ; 11(15): e2200546, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35545965

RESUMO

Antimicrobial peptidomimetics (AMPMs) have received widespread attention as potentially powerful weapons against antibiotic resistance. However, AMPMs' membrane disruption mechanism not only brings resistance-resistant nature, but also nonspecific binding and disruption toward eukaryotic cell membranes, and consequently, their hemolytic activity is the primary concern on clinical applications. Here, the preparation and screening of an AMPM library is reported, through which a best-performing hit, PT-b1, can be obtained. To further improve PT-b1's hemocompatibility, a strategy is devised to mask the amphiphilicity of the AMPM using a charge-free, FDA-approved amphiphilic polymer, Pluronic F-127 (PF127). A PF127 solution containing PT-b1 can form a temperature-sensitive, absorbable hydrogel at higher concentration, but dissolve and complex with PT-b1 through hydrophobic interactions at lower concentration or lower temperature. The complexation from PF127 can mask the amphiphilicity of PT-b1 and render it extremely hemocompatible, yet the reversibility in such nanocomplexation and the existence of a secondary mechanism of action ensure that the AMPM's potency remains unchanged. The in vivo effectiveness of this antimicrobial hydrogel system is demonstrated using a mice wound infection model established with Methicillin-resistant Staphylococcus aureus, and observations indicate the hydrogel can promote wound healing and suppress bacteria-caused inflammation even when resistant pathogens are involved.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Peptidomiméticos , Animais , Antibacterianos/química , Anti-Infecciosos/química , Hidrogéis/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Poloxâmero , Polímeros/farmacologia
13.
Mol Immunol ; 127: 223-229, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33017719

RESUMO

E3 ligase TRAF6 plays a critical role in TLRs trigged M1 macrophage activation. However, the function of TRAF6 in IL-4-induced M2 macrophage activation has not been illuminated. We report here that deficiency of TRAF6 significantly impaired IL-4-induced genes expression in macrophage. Mechanistically, TRAF6 mediated the protein stability of STAT6, a key factor in IL-4 signaling. Overexpression of TRAF6 increased STAT6 protein level, conversely, knockdown or knockout of endogenous TRAF6 decreased it. Further study showed that TRAF6 bound STAT6 by TRAF6 C domain and reduced K48-ubiquitination of STAT6 which could induce degradation of STAT6, explaining why TRAF6 could conduct STAT6 stability. Intriguingly, the E3 ligase activity of TRAF6 was dispensable for stabilizing STAT6, despite TRAF6 promoted its K63 ubiquitination. These results indicate that TRAF6 is essential for STAT6 stability in IL-4 signaling and may act as a positive regulator in both M1 and M2 polarization.


Assuntos
Interleucina-4/metabolismo , Ativação de Macrófagos , Fator de Transcrição STAT6/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Biomarcadores/metabolismo , Lisina/metabolismo , Camundongos , Domínios Proteicos , Estabilidade Proteica , Células RAW 264.7 , Fator 6 Associado a Receptor de TNF/química , Ubiquitinação
14.
Aviat Space Environ Med ; 80(9): 781-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19750875

RESUMO

BACKGROUND: The push-pull maneuver (PPM) can lead to loss of consciousness in pilots of high-performance aircraft. Modeling of the physical and physiological aspects of this phenomenon should allow improved countermeasures. METHODS: A structurally based mechanistic computer model was developed to incorporate dynamic carotid baroreflex responses and detailed modeling of vessel segments for different anatomic regions. The model was used to predict the effect of the PPM on cardiovascular responses and the protection afforded by extended coverage anti-G suits (ECGS) and neck pressure. RESULTS: The model was validated by comparing the simulation results with previously published experimental data obtained during centrifuge and tilt-table studies. Simulations of various PPM acceleration profiles indicated that +Gz tolerance was reduced in the presence of higher +Gz levels prior to the push phase, more -Gz levels during the push phase, and prolongation of the push phase. On the other hand, the onset rate for the two phases had only minor effects on +Gz tolerance. Model output suggested that improved protection could be provided by an ECGS with minimal inflation delay and a multilevel pressure schedule in which the leg bladders inflated to a higher pressure than the abdominal bladder. Modeling application of a 100-mmHg neck pressure during the push phase partly inactivated the carotid baroreflex, but induced only a small increase in tolerance. CONCLUSIONS: Mathematical modeling and simulation showed that +Gz tolerance for the PPM might be increased by improving the design and inflation schedule of the ECGS.


Assuntos
Aceleração , Fenômenos Fisiológicos Cardiovasculares , Simulação por Computador , Modelos Cardiovasculares , Adaptação Fisiológica , Barorreflexo , Artérias Carótidas/fisiologia , Centrifugação , Trajes Gravitacionais , Humanos , Teste da Mesa Inclinada
15.
IEEE Trans Med Imaging ; 38(12): 2891-2902, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31095480

RESUMO

Cone beam X-ray luminescence computed tomography (CB-XLCT) is a promising imaging technique in studying the physiological and pathological processes in small animals. However, the dynamic bio-distributions of probes in small animal, especially in adjacent targets are still hard to be captured directly from dynamic CB-XLCT. In this paper, a 4D temporal-spatial reconstruction method based on principal component analysis (PCA) in the projection space is proposed for dynamic CB-XLCT. First, projections of angles in each 3D frame are compressed to reduce the noises initially. Then a temporal PCA is performed on the projection data to decorrelate the 4D problem into separate 3D problems in the PCA domain. In the PCA domain, the difference between dynamic behaviors of multiple targets can be reflected by the first several principal components which can be further used for fast and improved reconstruction by a restarted Tikhonov regularization method. At last, by discarding the principal components mainly reflecting noise, the concentration series of targets are recovered from the first few reconstruction results with a mask as the constraint. The numerical simulation and phantom experiment demonstrate that the proposed method can resolve multiple targets and recover the dynamic distributions with high computation efficiency. The proposed method provides new feasibility for imaging dynamic bio-distributions of probes in vivo.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Animais , Estudos de Viabilidade , Camundongos , Imagens de Fantasmas , Análise de Componente Principal
16.
Biomed Opt Express ; 10(1): 1-17, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30775079

RESUMO

As an emerging hybrid imaging modality, cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed based on the development of X-ray excitable nanoparticles. Owing to the high degree of absorption and scattering of light through tissues, the CB-XLCT inverse problem is inherently ill-conditioned. Appropriate priors or regularizations are needed to facilitate reconstruction and to restrict the search space to a specific solution set. Typically, the goal of CB-XLCT reconstruction is to get the distributions of nanophosphors in the imaging object. Considering that the distributions of nanophosphors inside bodies preferentially accumulate in specific areas of interest, the reconstruction of XLCT images is usually sparse with some locally smoothed high-intensity regions. Therefore, a combination of the L1 and total variation regularization is designed to improve the imaging quality of CB-XLCT in this study. The L1 regularization is used for enforcing the sparsity of the reconstructed images and the total variation regularization is used for maintaining the local smoothness of the reconstructed image. The implementation of this method can be divided into two parts. First, the reconstruction image was reconstructed based on the fast iterative shrinkage-thresholding (FISTA) algorithm, then the reconstruction image was minimized by the gradient descent method. Numerical simulations and phantom experiments indicate that compared with the traditional ART, ADAPTIK and FISTA methods, the proposed method demonstrates its advantage in improving spatial resolution and reducing imaging time.

17.
Biomed Opt Express ; 9(6): 2844-2858, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258694

RESUMO

Cone-beam X-ray luminescence computed tomography (CB-XLCT) has become a promising technique for its higher utilization of X-ray and shorter scanning time compared to the narrow-beam XLCT, but it suffers from the low-spatial resolution that results in the insufficiency to resolve the adjacent multiple probes. In multispectral CB-XLCT, multiple probes show different emission behaviors in the dimension of the spectrum. In this work, a spectral-resolved CB-XLCT method combining multispectral CB-XLCT with principle component analysis (PCA) was proposed to improve the imaging resolution. Results of digital simulation and the phantom experiment illustrated that the proposed method was capable of resolving adjacent multiple probes accurately and had better performance than the common multispectral CB-XLCT with spectrum information priori.

18.
Biomed Opt Express ; 8(9): 3952-3965, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29026681

RESUMO

Cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed as a new molecular imaging modality recently. It can obtain both anatomical and functional tomographic images of an object efficiently, with the excitation of nanophosphors in vivo or in vitro by cone-beam X-rays. However, the ill-posedness of the CB-XLCT inverse problem degrades the image quality and makes it difficult to resolve adjacent luminescent targets with different concentrations, which is essential in the monitoring of nanoparticle metabolism and drug delivery. To address this problem, a multi-voltage excitation imaging scheme combined with principal component analysis is proposed in this study. Imaging experiments performed on physical phantoms by a custom-made CB-XLCT system demonstrate that two adjacent targets, with different concentrations and an edge-to-edge distance of 0 mm, can be effectively resolved.

19.
ACS Appl Mater Interfaces ; 9(46): 39985-39993, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29063752

RESUMO

As a novel molecular and functional imaging modality, X-ray luminescence computed tomography (XLCT) has shown its potentials in biomedical and preclinic applications. However, there are still some limitations of X-ray-excited luminescent materials, such as low luminescence efficiency, poor biocompatibility, and cytotoxicity, making in vivo XLCT imaging quite challenging. In this study, for the very first time, we present on using sub-10 nm ß-NaGdF4:X% Eu3+ nanoparticles with poly(acrylic acid) (PAA) surface modification, which demonstrate outstanding luminescence efficiency, uniform size distribution, water dispersity, and biosafety, as the luminescent probes for in vivo XLCT application. The pure hexagonal phase (ß-) NaGdF4 has been successfully synthesized and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM), and then the results of X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry  (EDX), and elemental mapping further confirm Eu3+ ions doped into NaGdF4 host. Under X-ray excitation, the ß-NaGdF4 nanoparticles with a doping level of 15% Eu3+ exhibited the most efficient luminescence intensity. Notably, the doping level of Eu3+ has no effect on the crystal phase and morphology of the NaGdF4-based host. Afterward, ß-NaGdF4:15% Eu3+ nanoparticles were modified with PAA to enhance the water dispersity and biocompatibility. The compatibility of in vivo XLCT imaging using such nanoparticles was systematically studied via in vitro cytotoxicity, physical phantom, and in vivo imaging experiments. The ultralow cytotoxicity of PAA-modified nanoparticles, which is confirmed by over 80% cell viability of SH-SY5Y cells when treated by high nanoparticle concentration of 200 µg/mL, overcome the major obstacle for in vivo application. In addition, the high luminescence intensity of PAA-modified nanoparticles enables the location error of in vivo XLCT imaging less than 2 mm, which is comparable to that using commercially available bulk material Y2O3:15% Eu3+. The proposed nanoparticles promote XLCT research into an in vivo stage. Further modification of these nanoparticles with biofunctional molecules could enable the potential of targeting XLCT imaging.

20.
PLoS One ; 11(5): e0156016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27213610

RESUMO

To explore the potential alterations in cerebral blood flow (CBF) and functional connectivity of recent onset post-traumatic stress disorder (PTSD) induced by a single prolonged trauma exposure, we recruited 20 survivors experiencing the same coal mining flood disaster as the PTSD (n = 10) and non-PTSD (n = 10) group, respectively. The pulsed arterial spin labeling (ASL) images were acquired with a 3.0T MRI scanner and the partial volume (PV) effect in the images was corrected for better CBF estimation. Alterations in CBF were analyzed using both uncorrected and PV-corrected CBF maps. By using altered CBF regions as regions-of-interest, seed-based functional connectivity analysis was then performed. While only one CBF deficit in right corpus callosum of PTSD patients was detected using uncorrected CBF, three more regions (bilateral frontal lobes and right superior frontal gyrus) were identified using PV-corrected CBF. Furthermore, the regional CBF of right superior frontal gyrus exhibited significantly negative correlation with the symptom severity (r = -0.759, p = 0.018). The resting-state functional connectivity analysis revealed increased connectivity between left frontal lobe and right parietal lobe. The results indicated the symptom-specific perfusion deficits and an aberrant connectivity in memory-related regions of PTSD patients when using PV-corrected ASL data. It also suggested that PV-corrected CBF exhibits more subtle changes that may be beneficial to perfusion and connectivity analysis.


Assuntos
Circulação Cerebrovascular/fisiologia , Memória/fisiologia , Rede Nervosa/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico , Estudos de Casos e Controles , China , Minas de Carvão , Vítimas de Desastres/psicologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA