Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 201: 108211, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368617

RESUMO

The Diaporthales includes 32 families, many of which are important plant pathogens, endophytes and saprobes, e.g., members of the families Pseudoplagiostomataceae, Pyrisporaceae and Schizoparmaceae. Nucleotide sequences derived from five genetic loci including: ITS, LSU, TEF1-α, TUB2 and RPB2 were used for Bayesian evolutionary analysis to determine divergence times and evolutionary relationships within the Schizoparmaceae. Molecular clock analyses revealed that the ancestor of Schizoparmaceae split during the Upper Cretaceous period approximately 75.7 Mya (95 % highest posterior density of 60.3-91.3 Mya). Reconstructing ancestral state in phylogenies (RASP) with using the Bayesian Binary Markov chain Monte Carlo (BBM) Method to reconstruct the historical biogeography for the family Schizoparmaceae indicated its most likely origin in Africa. Based on taxonomic and phylogenetic analyses, the Pseudoplagiostomataceae and Pyrisporaceae relationships were clarified and a total of four species described herein. For Pseudoplagiostomataceae, three new species and one known species that include, Pseudoplagiostoma fafuense sp. nov., Ps. ilicis sp. nov., Ps. sanmingense sp. nov. and Ps. bambusae are described and a key of Pseudoplagiostomataceae is provided. With respect to Pyrisporaceae, we considered Pseudoplagiostoma castaneae to be a synonym of Pyrispora castaneae. In addition, a new species of Schizoparmaceae, Coniella fujianensis sp. nov. is described and illustrated.

2.
J Fungi (Basel) ; 10(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921368

RESUMO

Members of the fungal order Diaporthales are sac fungi that include plant pathogens (the notorious chestnut blight fungus), as well as saprobes and endophytes, and are capable of colonizing a wide variety of substrates in different ecosystems, habitats, and hosts worldwide. However, many Diaporthales species remain unidentified, and various inconsistencies within its taxonomic category remain to be resolved. Here, we aimed to identify and classify new species of Diaporthales by using combined morphological and molecular characterization and coupling this information to expand our current phylogenetic understanding of this order. Fungal samples were obtained from dead branches and diseasedleaves of Camellia (Theaceae) and Castanopsis (Fagaceae) in Fujian Province, China. Based on morphological characteristics and molecular phylogenetic analyses derived from the combined nucleotide sequences of loci of the internal transcribed spacer regions with the intervening 5.8S nrRNA gene (ITS), the 28S large subunit of nuclear ribosomal RNA gene (LSU), the translation elongation factor 1-α gene (tef1), the partial beta-tubulin gene (tub2), and partial RNA polymerase II second-largest subunit gene (rpb2), three new species of Diaporthales were identified and characterized. They are as follows: Chrysofolia camelliae sp. nov., Dendrostoma castanopsidis sp. nov., and Pseudoplagiostoma wuyishanense sp. nov. They are described and illustrated. This study extends our understanding of species diversity within the Diaporthales.

3.
J Fungi (Basel) ; 10(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057339

RESUMO

Bamboo is an economically important crop that has gained prominence as an alternative to wood to reduce deforestation and ecosystem destruction. Diseases of bamboo that typically occur on leaves and stems can cause significant loss, reducing the quality and yield of the bamboo. However, there are few reports identifying the fungal species diversity and potential pathogens of bamboo. Here, we describe four new species of plant fungi from the leaves of bamboo within Fujian provinces, China. Fungi were isolated from diseased leaves collected within Fujian province and identified based on their morphological characteristics and multilocus phylogenies using nucleotide sequences derived from combined datasets of the intervening 5.8S nrRNA gene (ITS), the 28S large subunit of nuclear ribosomal RNA gene (LSU), the large subunit of RNA polymerase I (rpb1), the translation elongation factor 1-α gene (tef1-α), and the partial beta-tubulin gene (tub2). These analyses helped reveal and clarify taxonomic relationships in the family Magnaporthaceae. The new species of bambusicolous fungi identified include two species of Bifusisporella, described as B. fujianensis sp. nov. and B. bambooensis sp. nov., and two species of Apiospora, described as A. fujianensis sp. nov. and A. fuzhouensis sp. nov. This study further expands the characterization and distribution of fungi associated with bamboo.

4.
J Fungi (Basel) ; 9(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37998887

RESUMO

The insect pathogenic fungus, Ascosphaera apis, is the causative agent of honeybee chalk brood disease. Amylases are secreted by many plant pathogenic fungi to access host nutrients through the metabolism of starch, and the identification of new amylases can have important biotechnological applications. Production of amylase by A. apis in submerged culture was optimized using the response surface method (RSM). Media composition was modeled using Box-Behnken design (BBD) at three levels of three variables, and the model was experimentally validated to predict amylase activity (R2 = 0.9528). Amylase activity was highest (45.28 ± 1.16 U/mL, mean ± SE) in media composed of 46 g/L maltose and1.51 g/L CaCl2 at a pH of 6.6, where total activity was ~11-fold greater as compared to standard basal media. The enzyme was purified to homogeneity with a 2.5% yield and 14-fold purification. The purified enzyme had a molecular weight of 75 kDa and was thermostable and active in a broad pH range (> 80% activity at a pH range of 7-10), with optimal activity at 55 °C and pH = 7.5. Kinetic analyses revealed a Km of 6.22 mmol/L and a Vmax of 4.21 µmol/mL·min using soluble starch as the substrate. Activity was significantly stimulated by Fe2+ and completely inhibited by Cu2+, Mn2+, and Ba2+ (10 mM). Ethanol and chloroform (10% v/v) also caused significant levels of inhibition. The purified amylase essentially exhibited activity only on hydrolyzed soluble starch, producing mainly glucose and maltose, indicating that it is an endo-amylase (α-amylase). Amylase activity peaked at 99.38 U/mL fermented in a 3.7 L-bioreactor (2.15-fold greater than what was observed in flask cultures). These data provide a strategy for optimizing the production of enzymes from fungi and provide insight into the α-amylase of A. apis.

5.
Front Microbiol ; 14: 1164511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256050

RESUMO

Introduction: Tea is one of the most widely consumed beverages around the world. Larvae of the moth, Ectropis obliqua Prout (Geometridae, Lepidoptera), are one of the most destructive insect pests of tea in China. E. obliqua is a polyphagus insect that is of increasing concern due to the development of populations resistant to certain chemical insecticides. Microbial biological control agents offer an environmentally friendly and effective means for insect control that can be compatible with "green" and organic farming practices. Methods: To identify novel E. obliqua biological control agents, soil and inset cadaver samples were collected from tea growing regions in the Fujian province, China. Isolates were analyzed morphologically and via molecular characterization to identity them at the species level. Laboratory and greenhouse insect bioassays were used to determine the effectiveness of the isolates for E. obliqua control. Results: Eleven isolates corresponding to ten different species of Metarhizium were identified according to morphological and molecular analyses from soil and/or insect cadavers found on tea plants and/or in the surrounding soil sampled from eight different regions within the Fujian province, China. Four species of Metarhizium including M. clavatum, M. indigoticum, M. pemphigi, and M. phasmatodeae were documented for the first time in China, and the other species were identified as M. anisopliae, M. brunneum, M. lepidiotae, M. majus, M. pinghaense, and M. robertsii. Insect bioassays of the eleven isolates of Metarhizium revealed significant variation in the efficacy of each isolate to infect and kill E. obliqua. Metarhizium pingshaense (MaFZ-13) showed the highest virulence reaching a host target mortality rate of 93% in laboratory bioassays. The median lethal concentration (LC50) and median lethal time (LT50) values of M. pingshaense MaFZ-13 were 9.6 × 104 conidia/mL and 4.8 days, respectively. Greenhouse experiments and a time-dose-mortality (TDM) models were used to further evaluate and confirm the fungal pathogenic potential of M. pingshaense MaFZ-13 against E. obliqua larvae. Discussion: Isolation of indigenous microbial biological control agents targeting specific pests is an effective approach for collecting resources that can be exploited for pest control with lowered obstacles to approval and commercialization. Our data show the presence of four different previously unreported Metarhizium species in China. Bioassays of the eleven different Metarhizium strains isolated revealed that each could infect and kill E. obliqua to different degrees with the newly isolated M. pingshaense MaFZ-13 strain representing a particularly highly virulent isolate potentially applicable for the control of E. obliqua larvae.

6.
J Fungi (Basel) ; 9(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132776

RESUMO

Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 µM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 µg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 µg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 µg/mL and 22.87-53.31 µg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.

7.
J Agric Food Chem ; 68(33): 8976-8986, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32686929

RESUMO

Deoxyribonucleic acid (DNA) methylation plays an important role in fruit ripening and senescence. Here, the role of DNA methylation of the CpG island of SlACS10, LeCTR1, LeEIN3, LeERT10, and SlERF-A1 genes induced by heat treatment (37 °C) in postharvest ripening of tomato fruit was studied. After heat treatment, the firmness and vitamin C content showed higher levels, the loss of aldehydes in volatile components was delayed, and the activities of methylase and demethylase decreased in tomato fruit. Moreover, in heat-treated fruit, significant changes in DNA methylation of SlACS10, LeCTR1, LeEIN3, LeERT10, and SlERF-A1 were induced, the expression of LeERT10 and LeEIN3 was inhibited, the expression of SlERF-A1 was increased, by which ethylene signal transmission might be suppressed and the postharvest ripening of tomato fruit was delayed. The present study provided valuable information for understanding the essential role of DNA methylation in the postharvest ripening of tomato fruit.


Assuntos
Etilenos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Metilação de DNA/efeitos dos fármacos , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Temperatura Alta , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA