Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(10): e202317439, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38251812

RESUMO

Chemical presodiation (CP) is an effective strategy to enhance energy density of sodium ion batteries. However, the sodiation reagents reported so far are basically polycyclic aromatic hydrocarbons (PAHs) wth low reductive potential (~0.1 V vs. Na+ /Na), which could easily cause over-sodiation and structural deterioration of the presodiated cathodes. In this work, Aromatic ketones (AKs) are rationally designed as mild presodiating reagents by introducing a carbonyl group (C=O) into PAHs to balance the conjugated and inductive effect. As the representatives, two compounds 9-Fluorenoneb (9-FN) and Benzophenone (BP) manifest favorable equilibrium potential of 1.55 V and 1.07 V (vs. Na+ /Na), respectively. Note that 9-FN demonstrates versatile presodiating capability toward multiple Na uptake hosts (tunneled Na0.44 MnO2 , layered Na0.67 Ni0.33 Mn0.67 O2 , polyanionic Na4 Fe2.91 (PO4 )2 P2 O7 , Na3 V2 (PO4 )3 and Na3 V2 (PO4 )2 F3 ), enabling greatly improved initial charging capacity of the cathode to balance the irrevisible capacity of the anode. Our results indicate that the Aromatic ketones are competitive presodiating cathodic reagents for high-performance sodium-ion batteries, and will inspire more studies and application attempts in the future.

2.
Angew Chem Int Ed Engl ; 63(24): e202317177, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38606608

RESUMO

Co-intercalation reactions make graphite a feasible anode in Ca ion batteries, yet the correlation between Ca ion intercalation behaviors and electrolyte structure remains unclear. This study, for the first time, elucidates the pivotal role of anions in modulating the Ca ion solvation structures and their subsequent intercalation into graphite. Specifically, the electrostatic interactions between Ca ion and anions govern the configurations of solvated-Ca-ion in dimethylacetamide-based electrolytes and graphite intercalation compounds. Among the anions considered (BH4 -, ClO4 -, TFSI- and [B(hfip)4]-), the coordination of four solvent molecules per Ca ion (CN=4) leads to the highest reversible capacities and the fastest reaction kinetics in graphite. Our study illuminates the origins of the distinct Ca ion intercalation behaviors across various anion-modulated electrolytes, employing a blend of experimental and theoretical approaches. Importantly, the practical viability of graphite anodes in Ca-ion full cells is confirmed, showing significant promise for advanced energy storage systems.

3.
Angew Chem Int Ed Engl ; 60(39): 21310-21318, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34254416

RESUMO

Noticeable pseudo-capacitance behavior out of charge storage mechanism (CSM) has attracted intensive studies because it can provide both high energy density and large output power. Although cyclic voltammetry is recognized as the feasible electrochemical technique to determine it quantitatively in the previous works, the results are inferior due to uncertainty in the definitions and application conditions. Herein, three successive treatments, including de-polarization, de-residual and de-background, as well as a non-linear fitting algorithm are employed for the first time to calibrate the different CSM contribution of three typical cathode materials, LiFePO4 , LiMn2 O4 and Na4 Fe3 (PO4 )2 P2 O7 , and achieve well-separated physical capacitance, pseudo-capacitance and diffusive contributions to the total capacity. This work can eliminate misunderstanding concepts and correct ambiguous results of the pseudo-capacitance contribution and recognize the essence of CSM in electrode materials.

4.
Small ; 16(30): e2000741, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32578349

RESUMO

Owing to the advantages of high safety, low cost, high theoretical volumetric capacities, and environmental friendliness, magnesium-ion batteries (MIBs) have more feasibility for large-scale energy storage compared to lithium-ion batteries. However, lack of suitable cathode materials due to sluggish kinetics of magnesium ion is one of the biggest challenges. Herein, water-pillared sodium vanadium bronze nanowires (Na2 V6 O16 ·1.63H2 O) are reported as cathode material for MIBs, which display high performance in magnesium storage. The hydrated sodium ions provide excellent structural stability. The charge shielding effect of lattice water enables fast Mg2+ diffusion. It exhibits high specific capacity of 175 mAh g-1 , long cycle life (450 cycles), and high coulombic efficiency (≈100%). At high current density of 200 mA g-1 , the capacity retention is up to 71% even after 450 cycles (compared to the highest capacity), demonstrating excellent long-term cycling performance. The nature of charge storage kinetics is explored. Furthermore, a highly reversible structure change during the electrochemical process is proved by comprehensive electrochemical analysis. The remarkable electrochemical performance makes Na2 V6 O16 ·1.63H2 O a promising cathode material for low-cost and safe MIBs.

5.
Small ; 15(32): e1805427, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30773812

RESUMO

The increasing demands for renewable energy to substitute traditional fossil fuels and related large-scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium-ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid-scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium-ion battery (SIB) is regarded as an ideal battery choice for grid-scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse-power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high-power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future.

6.
Phys Chem Chem Phys ; 21(13): 7009-7015, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30869669

RESUMO

The effects of discharge cutoff voltages on the structural evolution and electrochemical performance of the LiVO3 cathode upon cycling are investigated by electrochemical measurements, electrochemical impedance spectroscopy, ex situ X-ray diffraction, Raman spectra, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. It is found that a lower cutoff voltage causes formation and accumulation of unstable V4+ ions on the surface of the electrode, which easily leads to severe structural deterioration and capacity fading. A limited cutoff voltage between 3.5 and 1.5 V can effectively enhance the structural stability and consequently the electrode demonstrates 75.9% capacity retention and neglectable working voltage decay over 400 cycles. The result that the operation voltage range strongly affects the structural stability of cycled LiVO3 provides a new insight into exploring feasible approaches to achieve highly stable LiVO3 and other vanadium-based electrodes for lithium-ion batteries.

7.
ACS Appl Mater Interfaces ; 16(14): 17637-17648, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38549247

RESUMO

Aqueous zinc-ion batteries (ZIBs) are competitive among the elective candidates for electrochemical energy storage systems, but the intrinsic drawbacks of zinc metal anodes such as dendrites and corrosion severely hinder their large-scale application. Developing alternative anode materials capable of high reversibility and stability for storing Zn2+ ions is a feasible approach to circumvent the challenge. Herein, a sulfur-defect-induced TiS1.94 (D-TiS1.94) as a promising intercalation anode material for ZIBs is designed. The abundant Zn2+-storage active sites and lower Zn2+ migration barrier induced by sulfur defects endow D-TiS1.94 with a high capacity for Zn2+-storage (219.1 mA h g-1 at 0.05 A g-1) and outstanding rate capability (107.3 mA h g-1 at 5 A g-1). In addition, a slight volume change of 8.1% is identified upon Zn2+ storage, which favors a prolonged cycling life (50.3% capacity remaining in 1500 cycles). More significantly, the D-TiS1.94||ZnxMnO2 full battery demonstrates a high discharge capacity of 155.7 mA h g-1 with a capacity retention of 59.8% in 400 cycles. It has been estimated that the high-capacity, low-operation voltage, and long-life D-TiS1.94 can be a promising component of the ZIB anode material family, and the strategy proposed in this work will provide guidance to the defect engineering of high-performance electrode materials toward energy storage applications.

8.
Chem Sci ; 14(30): 8206-8213, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37538828

RESUMO

Aqueous zinc-ion batteries (AZIBs) with excellent safety, low-cost and environmental friendliness have great application potential in large-scale energy storage systems and thus have received extensive research interest. Layered oxovanadium phosphate dihydrate (VOPO4·2H2O) is an appealing cathode for AZIBs due to the unique layered framework and desirable discharge plateau, but bottlenecked by low operation voltage and unstable cycling. Herein, we propose delta-oxovanadium phosphate (δ-VOPO4) without conventional pre-embedding of metal elements or organics into the structure and paired it into AZIBs for the first time. Consequently, superior to the layered counterpart, δ-VOPO4 exhibits better performance with a prominent discharge voltage of 1.46 V and a higher specific capacity of 122.6 mA h g-1 at 1C (1C = 330 mA g-1), as well as an impressive capacity retention of 90.88 mA h g-1 after 1000 cycles under 10C. By investigation of structure resolution and theoretical calculation, this work well elucidates the structure-function relationship in vanadyl phosphates, offering more chances for exploration of new cathode materials to construct high performance AZIBs.

9.
Dalton Trans ; 52(15): 4826-4834, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939173

RESUMO

Metal-organic frameworks (MOFs) have attracted increasing research interest in various fields. Unfortunately, the poor conductivity of most traditional MOFs considerably hinders their application in energy storage. Benefiting from the full charge delocalization in the atomic plane, two-dimensional conductive coordination frameworks achieve good electrochemical performance. In this work, π-π coupling conductive bismuth-catecholate nanobelts with tunable lengths, Bi(HHTP) (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), are synthesized by a simple hydrothermal reaction and their length-dependent electrochemical properties are also investigated. The Bi(HHTP) nanobelts (about 10 µm in length) possess appropriate porosity, numerous redox active sites and good electrical conductivity. Being a negative electrode for supercapacitors, Bi(HHTP) nanobelts display a high specific capacitance of 234.0 F g-1 and good cycling stability of 72% after 1000 cycles. Furthermore, the mechanism of charge storage is interpreted for both battery-type and surface-capacitive behavior. It is believed that the results of this work will help to develop battery-type negative electrode materials with promising electrochemical performance using some newly designed π-π coupling conductive coordination frameworks.

10.
Adv Mater ; 34(8): e2108353, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34877734

RESUMO

Single-crystalline cathode materials have attracted intensive interest in offering greater capacity retention than their polycrystalline counterparts by reducing material surfaces and phase boundaries. However, the single-crystalline LiCoO2 suffers severe structural instability and capacity fading when charged to high voltages (4.6 V) due to Co element dissolution and O loss, crack formation, and subsequent electrolyte penetration. Herein, by forming a robust cathode electrolyte interphase (CEI) in an all-fluorinated electrolyte, reversible planar gliding along the (003) plane in a single-crystalline LiCoO2 cathode is protected due to the prevention of element dissolution and electrolyte penetration. The robust CEI effectively controls the performance fading issue of the single-crystalline cathode at a high operating voltage of 4.6 V, providing new insights for improved electrolyte design of high-energy-density battery cathode materials.

11.
Chem Commun (Camb) ; 55(61): 9043-9046, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292568

RESUMO

We report for the first time a zero-strain cathode, Na4Fe7(PO4)6, for sodium-ion batteries (SIBs). This new iron-based polyanionic cathode delivers a reversible capacity of 66.5 mA h g-1 at 5 mA g-1 with almost 100% capacity retention over 1000 cycles under 200 mA g-1, and the outstanding performance benefits from single-phase-transition processes with a tiny volume change of only ∼0.24%.

12.
ACS Appl Mater Interfaces ; 10(14): 11689-11698, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29569890

RESUMO

Batteries and electrochemical capacitors play very important roles in the portable electronic devices and electric vehicles and have shown promising potential for large-scale energy storage applications. However, batteries or capacitors alone cannot meet the energy and power density requirements because rechargeable batteries have a poor power property, whereas supercapacitors offer limited capacity. Here, a novel symmetric sodium-ion capacitor (NIC) is developed based on low-cost Na0.44MnO2 nanorods. The Na0.44MnO2 with unique nanoarchitectures and iso-oriented feature offers shortened diffusion path lengths for both electronic and Na+ transport and reduces the stress associated with Na+ insertion and extraction. Benefiting from these merits, the symmetric device achieves a high power density of 2432.7 W kg-1, an improved energy density of 27.9 Wh kg-1, and a capacitance retention of 85.2% over 5000 cycles. Particularly, the symmetric NIC based on Na0.44MnO2 permits repeatedly reverse-polarity characteristics, thus simplifying energy management system and greatly enhancing the safety under abuse condition. This cost-effective, high-safety, and high-performance symmetric NIC can balance the energy and power density between batteries and capacitors and serve as an electric power source for future low-maintenance large-scale energy storage systems.

13.
ACS Appl Mater Interfaces ; 10(40): 34108-34115, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216037

RESUMO

A rechargeable aqueous Zn/Mn battery is a promising device for large-scale energy storage because of its abundant resources, low cost, and high safety. However, its application is plagued by a poor life cycle because of the electrochemical instability of MnO2 in aqueous electrolytes. Here, an alkaline Zn-Na0.44MnO2 dual-ion battery (denoted AZMDIB) is developed for the first time using Na0.44MnO2 as the cathode, a zinc metal sheet as the anode, and a 6 M NaOH aqueous solution as the electrolyte. When the discharge cutoff voltage is lowered to 0.3 V (vs Zn/Zn2+), the Na0.44MnO2 cathode delivers a high capacity of 345.5 mA h g-1 but with a poor cycling performance. The charge-discharge mechanism and structural evolution of the Na0.44MnO2 cathode in an extended potential window (1.95-0.3 V) are also explored. The Na0.44MnO2 electrode experiences two different electrochemical processes: Na+ ions insert/extract reversibly in the potential range of 1.95-1.1 V, and a phase transition occurs from Na0.559MnO2 to Mn(OH)2 below 1.1 V. The latter irreversible reaction is probably due to proton insertion, leading to a severe capacity fade. Nevertheless, in a narrower voltage range (2.0-1.1 V), the AZMDIB full cell exhibits a high reversible capacity (80.2 mA h g-1 at 0.5 C), high rate capability (32 mA h g-1 at 50 C), and excellent cycling stability (73% capacity retention over 1000 cycles at 10 C). Benefiting from the merits of environmental friendliness, cost-effectiveness, and high electrochemical performance, the rechargeable AZMDIB is a promising contender for grid-scale energy storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA