Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 168, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164758

RESUMO

BACKGROUND: Information transmission between primary tumor cells and immunocytes or stromal cells in distal organs is a critical factor in the formation of pre-metastatic niche (PMN). Understanding this mechanism is essential for developing effective therapeutic strategy against tumor metastasis. Our study aims to prove the hypothesis that circ-0034880-enriched tumor-derived extracellular vesicles (TEVs) mediate the formation of PMN and colorectal cancer liver metastasis (CRLM), and targeting circ-0034880-enriched TEVs might be an effective therapeutic strategy against PMN formation and CRLM. METHODS: We utilized qPCR and FISH to measure circRNAs expression levels in human CRC plasma, primary CRC tissues, and liver metastatic tissues. Additionally, we employed immunofluorescence, RNA sequencing, and in vivo experiments to assess the effect mechanism of circ-0034880-enriched TEVs on PMN formation and CRC metastasis. DARTS, CETSA and computational docking modeling were applied to explore the pharmacological effects of Ginsenoside Rb1 in impeding PMN formation. RESULTS: We found that circ-0034880 was highly enriched in plasma extracellular vesicles (EVs) derived from CRC patients and closely associated with CRLM. Functionally, circ-0034880-enriched TEVs entered the liver tissues and were absorbed by macrophages in the liver through bloodstream. Mechanically, TEVs-released circ-0034880 enhanced the activation of SPP1highCD206+ pro-tumor macrophages, reshaping the metastasis-supportive host stromal microenvironment and promoting overt metastasis. Importantly, our mechanistic findings led us to discover that the natural product Ginsenoside Rb1 impeded the activation of SPP1highCD206+ pro-tumor macrophages by reducing circ-0034880 biogenesis, thereby suppressing PMN formation and inhibiting CRLM. CONCLUSIONS: Circ-0034880-enriched TEVs facilitate strong interaction between primary tumor cells and SPP1highCD206+ pro-tumor macrophages, promoting PMN formation and CRLM. These findings suggest the potential of using Ginsenoside Rb1 as an alternative therapeutic agent to reshape PMN formation and prevent CRLM.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Neoplasias Hepáticas , Osteopontina , RNA Circular , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Vesículas Extracelulares/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Animais , RNA Circular/genética , Osteopontina/metabolismo , Osteopontina/genética , Linhagem Celular Tumoral , Microambiente Tumoral , Masculino , Feminino , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Cancer Med ; 13(7): e7092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581123

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) accounts for the majority of gastric cancer (GC) cases globally. The present study found that H. pylori promoted GC stem cell (CSC)-like properties, therefore, the regulatory mechanism of how H. pylori promotes GC stemness was explored. METHODS: Spheroid-formation experiments were performed to explore the self-renewal capacity of GC cells. The expression of R-spondin 3 (RSPO3), Nanog homeobox, organic cation/carnitine transporter-4 (OCT-4), SRY-box transcription factor 2 (SOX-2), CD44, Akt, glycogen synthase kinase-3ß (GSK-3ß), p-Akt, p-GSK-3ß, ß-catenin, and G protein subunit gamma 7 (GNG7) were detected by RT-qPCR, western blotting, immunohistochemistry (IHC), and immunofluorescence. Co-immunoprecipitation (CoIP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were performed to identify proteins interacting with RSPO3. Lentivirus-based RNA interference constructed short hairpin (sh)-RSPO3 GC cells. Small interfering RNA transfection was performed to inhibit GNG7. The in vivo mechanism was verified using a tumor peritoneal seeding model in nude mice. RESULTS: H. pylori extracts promoted a CSC-like phenotype in GC cells and elevated the expression of RSPO3. RSPO3 knockdown significantly reduced the CSC-like properties induced by H. pylori. Previous studies have demonstrated that RSPO3 potentiates the Wnt/ß-catenin signaling pathway, but the inhibitor of Wnt cannot diminish the RSPO3-induced activation of ß-catenin. CoIP and LC-MS/MS revealed that GNG7 is one of the transmembrane proteins interacting with RSPO3, and it was confirmed that RSPO3 directly interacted with GNG7. Recombinant RSPO3 protein increased the phosphorylation level of Akt and GSK-3ß, and the expression of ß-catenin in GC cells, but this regulatory effect of RSPO3 could be blocked by GNG7 knockdown. Of note, GNG7 suppression could diminish the promoting effect of RSPO3 to CSC-like properties. In addition, RSPO3 suppression inhibited MKN45 tumor peritoneal seeding in vivo. IHC staining also showed that RSPO3, CD44, OCT-4, and SOX-2 were elevated in H. pylori GC tissues. CONCLUSION: RSPO3 enhanced the stemness of H. pylori extracts-infected GC cells through the GNG7/ß-catenin signaling pathway.


Assuntos
Helicobacter pylori , Neoplasias Gástricas , Animais , Camundongos , Helicobacter pylori/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Camundongos Nus , Cromatografia Líquida , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Via de Sinalização Wnt , Neoplasias Gástricas/patologia , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células
3.
Phytomedicine ; 128: 155261, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493716

RESUMO

BACKGROUND: Recurrence and metastasis are the main causes of disease deterioration in colorectal cancer (CRC) patients, yet efficient therapeutic strategies are lacking. Natural compounds for efficient antitumour therapeutics are becoming increasingly prominent. Kaempferol, one of the main components of flavonoids in plants, displays a variety of pharmacological activities. Our preliminary experiments suggested that kaempferol could inhibit CRC metastasis and is significantly associated with the ß-catenin signalling pathway. Moreover, we also defined the regulatory roles of JMJD2C in ß-catenin signalling in our previous work. PURPOSE: This study aims to reveal the mechanism by which kaempferol inhibits CRC progression and regulates the JMJD2C/ß-catenin signalling pathway. METHODS: The migratory capabilities of CRC cells after kaempferol intervention were measured by scratch wound healing and transwell assays. Circ_0000345 knockdown CRC stable cell lines were generated by lentivirus infection. The possible mechanism of kaempferol on circ_0000345 was verified by molecular-protein docking and verification program cellular thermal shift assay (CETSA). A dual luciferase reporter gene assay was carried out for the targeting relationship among circ_0000345, miR-205-5p and JMJD2C. Fluorescence in situ hybridization (FISH) was performed to determine the expression of circ_0000345 in tumour tissues. A pulmonary metastatic model of CRC in vitro was built to assess the antimetastatic effect and mechanism of kaempferol in vivo. RESULTS: In vitro, kaempferol inhibits the ability to migrate of CRC cells by reducing the activation of the JMJD2C/ß-catenin signalling pathway. MiR-205-5p is a key bridge for kaempferol to inhibit the expression of JMJD2C. The function of miR-205-5p is impeded by circ_0000345, which shows higher expression levels in human metastatic CRC tissues than nonmetastatic CRC tissues, and its formation is regulated by the RNA-binding proteins HNRNPK and HNRNPL. Mechanistically, kaempferol physically interacts with HNRNPK and HNRNPL to suppress JMJD2C by downregulating the expression of circ_0000345. In vivo, kaempferol suppresses CRC lung metastasis. Kaempferol inhibits the activation of JMJD2C/ß-catenin signalling through reducing the expression of circ_0000345 in the CRC lung metastasis model. CONCLUSION: Circ_0000345 enhances activation of the JMJD2C/ß-catenin signalling pathway through miR-205-5p to promote CRC metastasis. Kaempferol inhibits CRC metastasis through the circ_0000345-mediated JMJD2C/ß-catenin signalling pathway, and this effect is influenced as a direct consequence of the binding of kaempferol with HNRNPK and HNRNPL. This provides promising therapeutic and/or adjuvant agents for advanced CRC and sheds light on the multifaceted role of phytomedicine in cancer.


Assuntos
Neoplasias Colorretais , Histona Desmetilases com o Domínio Jumonji , Quempferóis , beta Catenina , Quempferóis/farmacologia , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , beta Catenina/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , RNA Circular/metabolismo , RNA Circular/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos Nus , Camundongos Endogâmicos BALB C , Masculino , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos , Simulação de Acoplamento Molecular
4.
Heliyon ; 10(10): e31450, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831823

RESUMO

Ethnopharmacological relevance: Tumour-derived extracellular vesicles (TEVs) have been confirmed to facilitate colorectal cancer (CRC) metastasis by remodelling the tumour microenvironment (TME). Drugs targeted TEVs is considered as a promising therapeutic strategy for cancer treatment. Traditional Chinese medicine (TCM) plays a vital role in improving the prognosis of CRC patients and eventually CRC patients with distant metastasis. Although the anti-tumour effects of active compounds from TCM prescriptions are observed widely, the molecular mechanisms remain unknown. Aim of the study: This study aims to investigate the effects of active compounds in our library of TCM on preventing CRC metastasis, and also explore the potential mechanisms from the perspective of TEVs. Materials and methods: The effects of active compounds on the proliferation of CRC cells were determined by CCK-8 assay. TEVs were extracted from MC38 cells by ultracentrifugation and characterized by electron microscopy, Nanosight NS300 and western blotting. The TEV particles were quantified by Nanosight NS300. The potential mechanism by which astragaloside IV (ASIV) reduced TEV secretion was determined by western blotting. RAW264.7 cells were cocultured with the conditioned medium (CM) of MC38 cells treated with or without ASIV, and the activation of tumour-associated macrophages (TAMs) was assessed by immunofluorescence and quantitative polymerase chain reaction (qPCR). The migration of CRC cells was measured by wound healing and Transwell assay. A spleen-to-liver metastasis model of colorectal cancer was used to confirm the efficiency of ASIV in vivo. Liver metastatic tumours of the mice were used for liver weight measures and H&E staining. Immunofluorescence was applied to observe the infiltration of TAMs, the expression of neutral sphingomyelinase 2 (nSMase2) and Rab27a. Results: By screening our TCM monomer library, we found that ASIV, which is mainly extracted from Radix Astragali, reduced the release of TEVs from CRC cells in a time- and concentration-dependent manner. Mechanistically, ASIV inhibited the production and secretion of TEVs by downregulating nSMase2 and Rab27a expression in CRC cells. CM from ASIV-treated CRC cells reshaped the polarization of TAMs by decreasing M2-type polarization, increasing M1-type polarization. Consequently, the repolarization of M2-type to M1-type macrophages led to reduced invasion and migration of CRC cells. Moreover, we confirmed that ASIV inhibited the liver metastasis of CRC, reduced M2-type macrophage infiltration and decreased the expression of nSMase2 and Rab27a in liver metastases. Conclusions: ASIV inhibited CRC metastasis by reducing EVs release and suppressing M2-type TAMs activation. All these findings reveal a new insight into the mechanisms of ASIV in preventing CRC progression and provide a promising approach for anti-tumour therapy.

5.
Cancer Lett ; : 217186, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151722

RESUMO

Dysregulation of epigenetics is a hallmark of cancer development, and YTHDF1 stands out as a crucial epigenetic regulator with the highest DNA copy number variation among all N6-methyladenosine (m6A) regulators in colorectal cancer (CRC) patients. Here, we aimed to investigate the specific contribution of YTHDF1 overexpression to CRC progression and its consequences. Through multiple bioinformatic analysis of human cancer databases and clinical CRC samples, we identified GID8/Twa1 as a crucial downstream target of YTHDF1. YTHDF1 manipulates GID8 translation efficiency in a m6A-dependent manner, and high expression of GID8 is associated with more aggressive tumor progression and poor overall survival. Mechanistically, GID8 is intimately associated with glutamine metabolic demands by maintaining active glutamine uptake and metabolism through the regulation of excitatory amino acid transporter 1 (SLC1A3) and glutaminase (GLS), thereby facilitating the malignant progression of CRC. Inhibition of GID8 attenuated CRC proliferation and metastasis both in vitro and in vivo. In summary, we identified a previously unknown target pertaining to glutamine uptake and metabolism in tumor cells, underscoring the potential of GID8 in the treatment of CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA