Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Biol Chem ; 298(9): 102347, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963433

RESUMO

Cell death-inducing DNA fragmentation factor-like effector C (CIDEC) expression in adipose tissue positively correlates with insulin sensitivity in obese humans. Further, E186X, a single-nucleotide CIDEC variant is associated with lipodystrophy, hypertriglyceridemia, and insulin resistance. To establish the unknown mechanistic link between CIDEC and maintenance of systemic glucose homeostasis, we generated transgenic mouse models expressing CIDEC (Ad-CIDECtg) and CIDEC E186X variant (Ad-CIDECmut) transgene specifically in the adipose tissue. We found that Ad-CIDECtg but not Ad-CIDECmut mice were protected against high-fat diet-induced glucose intolerance. Furthermore, we revealed the role of CIDEC in lipid metabolism using transcriptomics and lipidomics. Serum triglycerides, cholesterol, and low-density lipoproteins were lower in high-fat diet-fed Ad-CIDECtg mice compared to their littermate controls. Mechanistically, we demonstrated that CIDEC regulates the enzymatic activity of adipose triglyceride lipase via interacting with its activator, CGI-58, to reduce free fatty acid release and lipotoxicity. In addition, we confirmed that CIDEC is indeed a vital regulator of lipolysis in adipose tissue of obese humans, and treatment with recombinant CIDEC decreased triglyceride breakdown in visceral human adipose tissue. Our study unravels a central pathway whereby adipocyte-specific CIDEC plays a pivotal role in regulating adipose lipid metabolism and whole-body glucose homeostasis. In summary, our findings identify human CIDEC as a potential 'drug' or a 'druggable' target to reverse obesity-induced lipotoxicity and glucose intolerance.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Animais , Colesterol , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados , Glucose , Intolerância à Glucose/genética , Intolerância à Glucose/prevenção & controle , Humanos , Resistência à Insulina/genética , Lipase/genética , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Camundongos , Nucleotídeos/metabolismo , Obesidade/genética , Proteínas/metabolismo , Transgenes , Triglicerídeos
2.
Am J Physiol Endocrinol Metab ; 322(4): E331-E343, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157807

RESUMO

Fsp27 was previously identified as a lipid droplet-associated protein in adipocytes. Various studies have shown that it plays a role in the regulation of lipid homeostasis in adipose tissue and liver. However, its function in muscle, which also accumulate and metabolize fat, remains completely unknown. Our present study identifies a novel role of Fsp27 in muscle performance. Here, we demonstrate that Fsp27-/- and Fsp27+/- mice, both males and females, had severely impaired muscle endurance and exercise capacity compared with wild-type controls. Liver and muscle glycogen stores were similar among all groups fed or fasted, and before or after exercise. Reduced muscle performance in Fsp27-/- and Fsp27+/- mice was associated with severely decreased fat content in the muscle. Furthermore, results in heterozygous Fsp27+/- mice indicate that Fsp27 haploinsufficiency undermines muscle performance in both males and females. In summary, our physiological findings reveal that Fsp27 plays a critical role in muscular fat storage, muscle endurance, and muscle strength.NEW & NOTEWORTHY This is the first study identifying Fsp27 as a novel protein associated with muscle metabolism. The Fsp27-knockout model shows that Fsp27 plays a role in muscular-fat storage, muscle endurance, and muscle strength, which ultimately impacts limb movement. In addition, our study suggests a potential metabolic paradox in which FSP27-knockout mice presumed to be metabolically healthy based on glucose utilization and oxidative metabolism are unhealthy in terms of exercise capacity and muscular performance.


Assuntos
Adipócitos , Gotículas Lipídicas , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Feminino , Gotículas Lipídicas/metabolismo , Masculino , Camundongos , Músculos/metabolismo , Proteínas/metabolismo
3.
Nat Rev Mol Cell Biol ; 9(5): 367-77, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18401346

RESUMO

Acquired resistance to the action of insulin to stimulate glucose transport in skeletal muscle is associated with obesity and promotes the development of type 2 diabetes. In skeletal muscle, insulin resistance can result from high levels of circulating fatty acids that disrupt insulin signalling pathways. However, the severity of insulin resistance varies greatly among obese people. Here we postulate that this variability might reflect differences in levels of lipid-droplet proteins that promote the sequestration of fatty acids within adipocytes in the form of triglycerides, thereby lowering exposure of skeletal muscle to the inhibitory effects of fatty acids.


Assuntos
Adipócitos/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Resistência à Insulina/fisiologia , Obesidade/fisiopatologia , Adipócitos/citologia , Tecido Adiposo/fisiologia , Animais , Humanos , Inflamação/fisiopatologia , Insulina/metabolismo , Lipólise/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , PPAR gama/genética , PPAR gama/metabolismo , Transdução de Sinais/fisiologia , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
J Lipid Res ; 60(4): 856-868, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782959

RESUMO

Treatment with PPARγ agonists in vivo improves human adipocyte metabolism, but the cellular mechanisms and possible depot differences in responsiveness to their effects are poorly understood. To examine the ex vivo metabolic effects of rosiglitazone (Rosi), we cultured explants of human visceral (omental) and abdominal subcutaneous adipose tissues for 7 days. Rosi increased mRNA levels of transcriptional regulators of brite/beige adipocytes (PGC1α, PRDM16), triglyceride synthesis (GPAT3, DGAT1), and lipolysis (ATGL) similarly in adipose tissues from both depots. In parallel, Rosi increased key modulators of FA oxidation (UCP1, FABP3, PLIN5 protein), rates of FA oxidation, and protein levels of electron transport complexes, suggesting an enhanced respiratory capacity as confirmed in newly differentiated adipocytes. Rosi led to the formation of small lipid droplets (SLDs) around the adipocyte central lipid droplet; each SLD was decorated with redistributed mitochondria that colocalized with PLIN5. SLD maintenance required lipolysis and FA reesterification. Rosi thus coordinated a structural and metabolic remodeling in adipocytes from both visceral and subcutaneous depots that enhanced oxidative capacity. Selective targeting of these cellular mechanisms to improve adipocyte FA handling may provide a new approach to treat metabolic complications of obesity and diabetes.


Assuntos
Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Gotículas Lipídicas/efeitos dos fármacos , Rosiglitazona/farmacologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Feminino , Humanos , Gotículas Lipídicas/metabolismo , Masculino , Pessoa de Meia-Idade , Oxirredução , Fenótipo
5.
Am J Physiol Endocrinol Metab ; 316(1): E34-E42, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325658

RESUMO

The lipolytic effects of growth hormone (GH) have been known for half a century and play an important physiological role for substrate metabolism during fasting. In addition, sustained GH-induced lipolysis is causally linked to insulin resistance. However, the underlying molecular mechanisms remain elusive. In the present study, we obtained experimental data in human subjects and used human adipose-derived stromal vascular cells (hADSCs) as a model system to elucidate GH-triggered molecular signaling that stimulates adipose tissue lipolysis and insulin resistance in human adipocytes. We discovered that GH downregulates the expression of fat-specific protein (FSP27), a negative regulator of lipolysis, by impairing the transcriptional ability of the master transcriptional regulator, peroxisome proliferator-activated receptor-γ (PPARγ) via MEK/ERK activation. Ultimately, GH treatment promotes phosphorylation of PPARγ at Ser273 and causes its translocation from nucleus to the cytosol. Surprisingly, FSP27 overexpression inhibited PPARγ Ser273 phosphorylation and promoted its nuclear retention. GH antagonist treatment had similar effects. Our study identifies a novel signaling mechanism by which GH transcriptionally induces lipolysis via the MEK/ERK pathway that acts along PPARγ-FSP27 in human adipose tissue.


Assuntos
Adipócitos Brancos/metabolismo , Hormônio do Crescimento Humano/metabolismo , Lipólise/genética , Sistema de Sinalização das MAP Quinases , PPAR gama/metabolismo , Proteínas/genética , Proteínas Reguladoras de Apoptose , Regulação da Expressão Gênica , Humanos , Técnicas In Vitro , Masculino , Fosforilação , Proteínas/metabolismo , Adulto Jovem
6.
Arterioscler Thromb Vasc Biol ; 35(6): 1498-506, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25908760

RESUMO

OBJECTIVE: Increased visceral adiposity has been closely linked to insulin resistance, endothelial dysfunction, and cardiometabolic disease in obesity, but pathophysiological mechanisms are poorly understood. We sought to investigate mechanisms of vascular insulin resistance by characterizing depot-specific insulin responses and gain evidence that altered functionality of transcription factor forkhead box O-1 (FOXO-1) may play an important role in obesity-related endothelial dysfunction. APPROACH AND RESULTS: We intraoperatively collected paired subcutaneous and visceral adipose tissue samples from 56 severely obese (body mass index, 43 ± 7 kg/m(2)) and 14 nonobese subjects during planned surgical operations, and characterized depot-specific insulin-mediated responses using Western blot and quantitative immunofluorescence techniques. Insulin signaling via phosphorylation of FOXO-1 and consequent endothelial nitric oxide synthase stimulation was selectively impaired in the visceral compared with subcutaneous adipose tissue and endothelial cells of obese subjects. In contrast, tissue actions of insulin were preserved in nonobese individuals. Pharmacological antagonism with AS1842856 and biological silencing using small interfering RNA-mediated FOXO-1 knockdown reversed insulin resistance and restored endothelial nitric oxide synthase activation in the obese. CONCLUSIONS: We observed profound endothelial insulin resistance in the visceral adipose tissue of obese humans which improved with FOXO-1 inhibition. FOXO-1 modulation may represent a novel therapeutic target to diminish vascular insulin resistance. In addition, characterization of endothelial insulin resistance in the adipose microenvironment may provide clues to mechanisms of systemic disease in human obesity.


Assuntos
Endotélio Vascular/fisiopatologia , Fatores de Transcrição Forkhead/metabolismo , Resistência à Insulina/fisiologia , Obesidade/fisiopatologia , Adulto , Preparações de Ação Retardada , Células Endoteliais/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Humanos , Insulina/farmacologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Quinolonas/farmacologia
7.
J Biol Chem ; 289(21): 14481-7, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24742676

RESUMO

Lipolysis in fat tissue represents a major source of circulating fatty acids. Previously, we have found that lipolysis in adipocytes is controlled by early growth response transcription factor Egr1 that directly inhibits transcription of adipose triglyceride lipase, ATGL (Chakrabarti, P., Kim, J. Y., Singh, M., Shin, Y. K., Kim, J., Kumbrink, J., Wu, Y., Lee, M. J., Kirsch, K. H., Fried, S. K., and Kandror, K. V. (2013) Mol. Cell. Biol. 33, 3659-3666). Here we demonstrate that knockdown of the lipid droplet protein FSP27 (a.k.a. CIDEC) in human adipocytes increases expression of ATGL at the level of transcription, whereas overexpression of FSP27 has the opposite effect. FSP27 suppresses the activity of the ATGL promoter in vitro, and the proximal Egr1 binding site is responsible for this effect. FSP27 co-immunoprecipitates with Egr1 and increases its association with and inhibition of the ATGL promoter. Knockdown of Egr1 attenuates the inhibitory effect of FSP27. These results provide a new model of transcriptional regulation of ATGL.


Assuntos
Adipócitos/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Lipase/metabolismo , Proteínas/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Proteínas Reguladoras de Apoptose , Sítios de Ligação/genética , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Expressão Gênica , Células HEK293 , Humanos , Immunoblotting , Lipase/genética , Lipólise/genética , Camundongos , Microscopia Confocal , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Biol Chem ; 289(17): 12029-12039, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24627478

RESUMO

In adipocytes, lipolysis is a highly regulated process involving hormonal signals, lipid droplet-associated proteins, and lipases. The discovery of new lipid droplet-associated proteins added complexity to the current model of lipolysis. In this study, we used cultured human adipocytes to demonstrate that fat-specific protein 27 (FSP27), an abundantly expressed protein in adipocytes, regulates both basal and stimulated lipolysis by interacting with adipose triglyceride lipase (ATGL, also called desnutrin or PNPLA2). We identified a core domain of FSP27, amino acids 120-220, that interacts with ATGL to inhibit its lipolytic function and promote triglyceride storage. We also defined the role of FSP27 in free fatty acid-induced insulin resistance in adipocytes. FSP27 depletion in human adipocytes increased lipolysis and inhibited insulin signaling by decreasing AKT phosphorylation. However, reducing lipolysis by either depletion of ATGL or expression of exogenous full-length FSP27 or amino acids 120-220 protected human adipocytes against the adverse effects of free fatty acids on insulin signaling. In embryonic fibroblasts derived from ATGL KO mice, exogenous free fatty acids did not affect insulin sensitivity. Our results demonstrate a crucial role for FSP27-ATGL interactions in regulating lipolysis, triglyceride accumulation, and insulin signaling in human adipocytes.


Assuntos
Adipócitos/enzimologia , Resistência à Insulina , Lipase/metabolismo , Lipólise/fisiologia , Proteínas/fisiologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Humanos , Insulina/metabolismo , Insulina/farmacologia , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Proteínas/genética , Transdução de Sinais , Triglicerídeos/metabolismo
9.
Obesity (Silver Spring) ; 32(1): 70-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37929774

RESUMO

OBJECTIVE: This study investigated remodeling of cellular metabolism and structures during browning of primary human adipocytes derived from both visceral and subcutaneous adipose tissues. Effects of glucocorticoids on the browning were also assessed. METHODS: Differentiated omental and subcutaneous human adipocytes were treated with rosiglitazone, with or without dexamethasone, and expression levels of brite adipocyte markers, lipolysis, and lipid droplet and mitochondrial structures were examined. RESULTS: Both omental and subcutaneous adipocytes acquired brite phenotypes upon peroxisome proliferator-activated receptor-γ agonist treatment, and dexamethasone tended to enhance the remodeling. Although rosiglitazone increased lipolysis during treatment, brite adipocytes exhibited lower basal lipolytic rates and enhanced responses to ß-adrenergic agonists or atrial natriuretic peptide. Transcriptome analysis identified induction of both breakdown and biosynthesis of lipids in brite adipocytes. After 60+ days in culture, lipid droplet size increased to ~50 microns, becoming almost unilocular in control adipocytes, and after browning, they acquired paucilocular morphology, clusters of small lipid droplets (1-2 micron) surrounded by mitochondria appearing on the periphery of the central large one. CONCLUSIONS: Metabolic and structural remodeling during browning of primary human adipocytes is similar to previous findings in human adipocytes in vivo, supporting their uses for mechanical studies investigating browning with translational relevance.


Assuntos
Adipócitos , Gordura Subcutânea , Humanos , Rosiglitazona/farmacologia , Rosiglitazona/metabolismo , Adipócitos/metabolismo , Gordura Subcutânea/metabolismo , Lipólise , Dexametasona
10.
J Endocrinol ; 260(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38174979

RESUMO

Studies in humans and mice have determined that distinct subpopulations of adipocytes reside even within individual adipose tissue depots. Previously, our lab defined three white adipocyte subpopulations with stable and unique gene expression profiles, which were termed type 1, 2, and 3 adipocytes, respectively. Our previous studies demonstrated that type 2 adipocytes were highly responsive to the inflammatory cytokine, tumor necrosis factor alpha (TNFα). This study extends these findings to investigate the role of type 2 adipocytes in obesity. We found that treatment with TNFα increased lipolysis specifically in type 2 adipocytes, at least in part, through the reduction of fat-specific protein 27 (FSP27) expression. To assess the physiological role of lipolysis from this adipocyte subpopulation, a type2Ad-hFSP27tg mouse model was generated by overexpressing human FSP27 specifically in type 2 adipocytes. Glucose and insulin tolerance test analysis showed that male type2Ad-hFSP27tg mice on 60% high-fat diet exhibited improved glucose tolerance and insulin sensitivity, with no change in body weight compared to controls. These metabolic changes may, at least in part, be explained by the reduced lipolysis rate in the visceral fat of type2Ad-hFSP27tg mice. Although FSP27 overexpression in primary type 2 adipocytes was sufficient to acutely reduce TNFα-induced apoptosis in vitro, it failed to reduce macrophage infiltration in obesity in vivo. Taken together, these results strongly suggest that type 2 adipocytes contribute to the regulation of lipolysis and could serve as a potential therapeutic target for obesity-associated insulin resistance.


Assuntos
Resistência à Insulina , Lipólise , Masculino , Camundongos , Humanos , Animais , Lipólise/genética , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Adipócitos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Camundongos Endogâmicos C57BL
11.
Biochem Biophys Res Commun ; 432(2): 296-301, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23399566

RESUMO

Human adipocytes express high levels of two distinct lipid droplet proteins, fat specific protein 27 (FSP27; also called CIDEC), a member of the CIDE family, and perilipin1 (PLIN1), a member of the PAT family. Both proteins play a role in fat metabolism in adipocytes, but how they interact is not known. Our present study demonstrates that FSP27 and PLIN1 co-localize and interact in cultured human primary adipocytes. We also found that the C-terminal domain of FSP27, aa 120-220, interacts with PLIN1. Individual expression of exogenous FSP27 or PLIN1 increased triglyceride content and decreased glycerol release (a measure of lipolysis), but co-expression of both proteins did not further increase triglyceride content or decrease lipolysis in human adipocytes. However, the combination of PLIN1 and FSP27 increased the average size of lipid droplets or caused the formation of unilocular adipocytes. Our data suggest that FSP27 interacts with PLIN1 to regulate lipid droplet size in human adipocytes in a concerted manner.


Assuntos
Adipócitos/metabolismo , Proteínas de Transporte/metabolismo , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Triglicerídeos/metabolismo , Proteínas Reguladoras de Apoptose , Células Cultivadas , Humanos , Lipólise , Perilipina-1 , Proteínas/genética
12.
Endocrinology ; 164(11)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37897489

RESUMO

In adipose tissue, growth hormone (GH) stimulates lipolysis, leading to an increase in plasma free fatty acid levels and a reduction in insulin sensitivity. In our previous studies, we have found that GH increases lipolysis by reducing peroxisome proliferator-activated receptor γ (PPARγ) transcription activity, leading to a reduction of tat-specific protein 27 (FSP27, also known as CIDEC) expression. In previous studies, our laboratory uncovered 3 developmentally distinct subpopulations of white adipocytes. In this manuscript, we show that one of the subpopulations, termed type 2 adipocytes, has increased GH-induced signaling and lipolysis compared to other adipocyte subtypes. To assess the physiological role of GH-mediated lipolysis mediated by this adipocyte subpopulation, we specifically expressed human FSP27 (hFSP27) transgene in type 2 adipocytes (type2Ad-hFSP27tg mice). Systemically, male type2Ad-hFSP27tg mice displayed reduced serum glycerol release and nonesterified fatty acids levels after acute GH treatment, and improvement in acute, but not chronic, GH-induced glucose intolerance. Furthermore, we demonstrate that type2Ad-hFSP27tg mice displayed improved hepatic insulin signaling. Taken together, these results indicate that this adipocyte subpopulation is a critical regulator of the GH-mediated lipolytic and metabolic response. Thus, further investigation of adipocyte subpopulations may provide novel treatment strategies to regulate GH-induced glucose intolerance in patients with growth and metabolic disorders.


Assuntos
Intolerância à Glucose , Hormônio do Crescimento Humano , Humanos , Masculino , Camundongos , Animais , Hormônio do Crescimento/metabolismo , Lipólise/genética , Intolerância à Glucose/genética , Hormônio do Crescimento Humano/farmacologia , Hormônio do Crescimento Humano/metabolismo , Adipócitos Brancos/metabolismo , Glucose
13.
Diabetes ; 72(1): 19-32, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256836

RESUMO

Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC), originally identified to be a lipid droplet-associated protein in adipocytes, positively associates with insulin sensitivity. Recently, we discovered that it is expressed abundantly in human endothelial cells and regulates vascular function. The current study was designed to characterize the physiological effects and molecular actions of endothelial CIDEC in the control of vascular phenotype and whole-body glucose homeostasis. To achieve this, we generated a humanized mouse model expressing endothelial-specific human CIDEC (E-CIDECtg). E-CIDECtg mice exhibited protection against high-fat diet-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, these mice displayed improved insulin signaling and endothelial nitric oxide synthase activation, enhanced endothelium-dependent vascular relaxation, and improved vascularization of adipose tissue, skeletal muscle, and heart. Mechanistically, we identified a novel interplay of CIDEC-vascular endothelial growth factor A (VEGFA)-vascular endothelial growth factor receptor 2 (VEGFR2) that reduced VEGFA and VEGFR2 degradation, thereby increasing VEGFR2 activation. Overall, our results demonstrate a protective role of endothelial CIDEC against obesity-induced metabolic and vascular dysfunction, in part, by modulation of VEGF signaling. These data suggest that CIDEC may be investigated as a potential future therapeutic target for mitigating obesity-related cardiometabolic disease.


Assuntos
Resistência à Insulina , Fator A de Crescimento do Endotélio Vascular , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Obesidade/metabolismo , Endotélio/metabolismo
14.
Proc Natl Acad Sci U S A ; 106(47): 20063-8, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19892737

RESUMO

Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of phosphatidylinositol 4, 5, bisphosphate (PIP(2)), altering its distribution. Fluorescence image correlation spectroscopic studies on model membranes suggest that an increase in ceramide decreases clustering of PIP(2) and its partitioning into ordered membrane domains. Thus ceramide kinase-mediated maintenance of ceramide level is important for the local regulation of PIP(2) and PLC during phototransduction.


Assuntos
Drosophila melanogaster/fisiologia , Transdução de Sinal Luminoso/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Ceramidas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Eletrorretinografia , Homeostase , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Luz , Mutação , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Células Fotorreceptoras de Invertebrados/fisiologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/genética
15.
Nat Rev Endocrinol ; 18(9): 558-573, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750929

RESUMO

Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.


Assuntos
Doenças Cardiovasculares , Fibrose/metabolismo , Hormônio do Crescimento Humano/metabolismo , Neoplasias , Animais , Doenças Cardiovasculares/metabolismo , Criança , Nanismo Hipofisário/metabolismo , Hormônio do Crescimento , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Neoplasias/metabolismo
16.
ACS Nano ; 16(2): 2233-2248, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138811

RESUMO

Understanding the principles that guide the uptake of engineered nanomaterials (ENMs) by cells is of interest in biomedical and occupational health research. While evidence has started to accumulate on the role of membrane proteins in ENM uptake, the role of membrane lipid chemistry in regulating ENM endocytosis has remained largely unexplored. Here, we have addressed this issue by altering the plasma membrane lipid composition directly in live cells using a methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange method. Our observations, in an alveolar epithelial cell line and using silica nanoparticles, reveal that the lipid composition of the plasma membrane outer leaflet plays a significant role in ENM endocytosis and the intracellular fate of ENMs, by affecting nonspecific ENM diffusion into the cell, changing membrane fluidity, and altering the activity of scavenger receptors (SRs) involved in active endocytosis. These results have implications for understanding ENM uptake in different subsets of cells, depending on cell membrane lipid composition.


Assuntos
Nanoestruturas , Membrana Celular/metabolismo , Endocitose , Lipídeos de Membrana/metabolismo , Nanoestruturas/química , Receptores Depuradores/metabolismo
17.
J Lipid Res ; 52(2): 221-36, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21097823

RESUMO

The lipid droplet-associated fat specific protein 27 (FSP27) suppresses lipolysis and thereby enhances triglyceride accumulation in adipocytes. We and others have recently found FSP27 to be a remarkably short-lived protein (half-life, 15 min) due to its rapid ubiquitination and proteasomal degradation. Thus, we tested the hypothesis that lipolytic agents such as tumor necrosis factor-α (TNF-α) and isoproterenol modulate FSP27 levels to regulate FFA release. Consistent with this concept, we showed that the lipolytic actions of TNF-α, interleukin-1ß (IL-1ß), and IFN-γ are accompanied by marked decreases in FSP27 expression and lipid droplet size in mouse adipocytes. Similar depletion of FSP27 using short interfering RNA (siRNA) mimicked the lipolysis-enhancing effect of TNF-α, while maintaining stable FSP27 levels using expression of hemagglutinin epitope-tagged FSP27 blocked TNF-α-mediated lipolysis. In contrast, we show the robust lipolytic action of isoproterenol is paradoxically associated with increases in FSP27 levels and a delayed degradation rate corresponding to decreased ubiquitination. This catecholamine-mediated increase in FSP27 abundance, probably a feedback mechanism for restraining excessive lipolysis by catecholamines, is mimicked by forskolin or 8-bromo-cAMP treatment and is prevented by the protein kinase A (PKA) inhibitor KT5720 or by PKA depletion using siRNA. Taken together, these data identify the regulation of FSP27 as an important intermediate in the mechanism of lipolysis in adipocytes in response to TNF-α and isoproterenol.


Assuntos
Isoproterenol/farmacologia , Lipólise/efeitos dos fármacos , Proteínas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3-L1 , Animais , Camundongos , Proteínas/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
18.
J Cell Physiol ; 226(5): 1399-406, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20945399

RESUMO

Dicer, an enzyme involved in microRNA maturation, is required for proper embryo gastrulation and tissue morphogenesis during mammalian development. Using primary cultures of fibroblasts and pre-adipocytes, we have previously shown that Dicer is essential for early stages of adipogenic cell differentiation. In this study, we have utilized Dicer-conditional mice to explore a role for Dicer and microRNA biogenesis in the terminal differentiation of adipocytes in vivo and in the formation of white and brown adipose tissue. Deletion of Dicer in differentiated adipocytes in Dicer-conditional, aP2-Cre transgenic mice reduced the level of various adipogenic-associated transcripts and inhibited lipogenesis in white adipocytes, resulting in a severe depletion of white adipose tissue in mice. In contrast, Dicer was not required in vivo for lipogenesis in brown adipose or for brown fat formation. However, Dicer deletion in brown adipose did decrease the expression of genes involved in thermoregulation. The results of our study provide genetic evidence of a role for microRNA molecules in regulating adipogenesis and reveal distinct requirements for Dicer in the formation of white and brown adipose tissue.


Assuntos
Adipócitos/enzimologia , Adipogenia , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Branco/enzimologia , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/metabolismo , MicroRNAs/metabolismo , Adipócitos/patologia , Adipogenia/genética , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/crescimento & desenvolvimento , Tecido Adiposo Branco/patologia , Fatores Etários , Animais , Regulação da Temperatura Corporal/genética , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Endorribonucleases/deficiência , Endorribonucleases/genética , Proteínas de Ligação a Ácido Graxo/genética , Regulação da Expressão Gênica no Desenvolvimento , Integrases/genética , Lipogênese/genética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ribonuclease III
19.
J Clin Invest ; 118(8): 2693-6, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18654644

RESUMO

Fat-specific protein of 27 kDa (FSP27) is a highly expressed adipocyte protein that promotes triglyceride accumulation within lipid droplets. In this issue of the JCI, Nishino et al. show that FSP27 also helps to maintain the characteristically large unilocular lipid droplet structure within each white adipocyte (see the related article beginning on page 2808). Fragmentation of lipid droplets in white adipocytes from FSP27-KO mice caused both increased lipolysis and upregulation of genes enhancing mitochondrial oxidative metabolism. This increased energy expenditure in turn protected the mice from diet-induced obesity and insulin resistance. These new results highlight powerful mechanisms that tightly coordinate rates of triglyceride storage in lipid droplets with mitochondrial fatty acid oxidation in white adipocytes.


Assuntos
Lipólise/fisiologia , Proteínas/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Células Cultivadas , Metabolismo Energético , Ácidos Graxos não Esterificados/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/química , Mitocôndrias/metabolismo , Modelos Biológicos , Oxirredução , Proteínas/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA