Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Cell ; 186(18): 3747-3752, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657415

RESUMO

A paradigm shift in research culture is required to ease perceived tensions between autistic people and the biomedical research community. As a group of autistic and non-autistic scientists and stakeholders, we contend that through participatory research, we can reject a deficit-based conceptualization of autism while building a shared vision for a neurodiversity-affirmative biomedical research paradigm.


Assuntos
Transtorno Autístico , Pesquisa Biomédica , Humanos , Pesquisa Biomédica/ética , Comportamento , Pesquisa Participativa Baseada na Comunidade
2.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430105

RESUMO

Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.


Assuntos
Ácido Glutâmico , Glutamina , Criança , Humanos , Adolescente , Adulto Jovem , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ácido Glutâmico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colina/metabolismo , Creatina/metabolismo , Inositol/metabolismo , Ácido gama-Aminobutírico/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Ácido Aspártico/metabolismo
3.
NMR Biomed ; 37(7): e5092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38154459

RESUMO

Several studies have suggested that atypical social processing in neurodevelopmental conditions (e.g. autism) is associated with differences in excitation and inhibition, through changes in the levels of glutamate and gamma-aminobutyric acid (GABA). While associations between baseline metabolite levels and behaviours can be insightful, assessing the neurometabolic response of GABA and glutamate during social processing may explain altered neurochemical function in more depth. Thus far, there have been no attempts to determine whether changes in metabolite levels are detectable using functional MRS (fMRS) during social processing in a control population. We performed Mescher-Garwood point resolved spectroscopy edited fMRS to measure the dynamic response of GABA and glutamate in the superior temporal sulcus (STS) and visual cortex (V1) while viewing social stimuli, using a design that allows for analysis in both block and event-related approaches. Sliding window analyses were used to investigate GABA and glutamate dynamics at higher temporal resolution. The changes of GABA and glutamate levels with social stimulus were largely non-significant. A small decrease in GABA levels was observed during social stimulus presentation in V1, but no change was observed in STS. Conversely, non-social stimulus elicited changes in both GABA and glutamate levels in both regions. Our findings suggest that the current experimental design primarily captures effects of visual stimulation, not social processing. Here, we discuss the feasibility of using fMRS analysis approaches to assess changes in metabolite response.


Assuntos
Estudos de Viabilidade , Ácido Glutâmico , Espectroscopia de Ressonância Magnética , Ácido gama-Aminobutírico , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Humanos , Masculino , Adulto , Feminino , Comportamento Social , Adulto Jovem , Córtex Visual/metabolismo , Córtex Visual/fisiologia
4.
J Child Psychol Psychiatry ; 65(6): 862-865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38130022

RESUMO

Clinical trials of pharmacological candidates targeting the core features of autism have largely failed. This is despite evidence linking differences in multiple neurochemical systems to brain function in autism. While this has in part been explained by the heterogeneity of the autistic population, the field has largely relied upon association studies to link brain chemistry to function. The only way to directly establish that a neurotransmitter or neuromodulator is involved in a candidate brain function is to change it and observe a shift in that function. This experimental approach dominates preclinical neuroscience, but not human studies. There is little direct experimental evidence describing how neurochemical systems modulate information processing in the living human brain. Thus, our understanding of how neurochemical differences contribute to neurodiversity is limited, impeding our ability to translate findings from animal studies into humans. Here, we introduce our 'shiftability' paradigm, an approach to bridge the translational gap in autism research. We provide an overview of the guiding principles and methodologies we use to directly test the hypothesis that neurochemical systems function differently in autistic and non-autistic individuals.


Assuntos
Pesquisa Translacional Biomédica , Humanos , Transtorno Autístico/fisiopatologia , Neurociências , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Animais , Encéfalo/fisiopatologia , Encéfalo/metabolismo
5.
BMC Psychiatry ; 24(1): 319, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658877

RESUMO

BACKGROUND: The underlying neurobiology of the complex autism phenotype remains obscure, although accumulating evidence implicates the serotonin system and especially the 5HT2A receptor. However, previous research has largely relied upon association or correlation studies to link differences in serotonin targets to autism. To directly establish that serotonergic signalling is involved in a candidate brain function our approach is to change it and observe a shift in that function. We will use psilocybin as a pharmacological probe of the serotonin system in vivo. We will directly test the hypothesis that serotonergic targets of psilocybin - principally, but not exclusively, 5HT2A receptor pathways-function differently in autistic and non-autistic adults. METHODS: The 'PSILAUT' "shiftability" study is a case-control study autistic and non-autistic adults. How neural responses 'shift' in response to low doses (2 mg and 5 mg) of psilocybin compared to placebo will be examined using multimodal techniques including functional MRI and EEG. Each participant will attend on up to three separate visits with drug or placebo administration in a double-blind and randomized order. RESULTS: This study will provide the first direct evidence that the serotonin targets of psilocybin function differently in the autistic and non-autistic brain. We will also examine individual differences in serotonin system function. CONCLUSIONS: This work will inform our understanding of the neurobiology of autism as well as decisions about future clinical trials of psilocybin and/or related compounds including stratification approaches. TRIAL REGISTRATION: NCT05651126.


Assuntos
Transtorno Autístico , Encéfalo , Imageamento por Ressonância Magnética , Psilocibina , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Transtorno Autístico/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Método Duplo-Cego , Eletroencefalografia , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Psilocibina/uso terapêutico , Psilocibina/farmacologia , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
J Neurosci ; 42(31): 6121-6130, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35764380

RESUMO

Experiences of physical exertion guide our assessments of effort. While these assessments critically influence our decisions to engage in daily activities, little is known about how they are generated. We had female and male human participants exert grip force and assess how effortful these exertions felt; and used magnetic resonance spectroscopy to measure their brain GABA concentration. We found that variability in exertion (i.e., the coefficient of variation in their force exertion profile) was associated with increases in assessments of effort, making participants judge efforts as more costly. GABA levels in the sensorimotor cortex (SM1) moderated the influence of exertion variability on overassessments of effort. In individuals with higher sensorimotor GABA, exertion variability had a diminished influence on overassessments of effort. Essentially, sensorimotor GABA had a protective effect on the influence of exertion variability on inflations of effort assessment. Our findings provide a neurobiological account of how the brain's GABAergic system integrates features of physical exertion into judgments of effort, and how basic sensorimotor properties may influence higher-order judgments of effort.SIGNIFICANCE STATEMENT Feelings of effort critically shape our decisions to partake in activities of daily living. It remains unclear how the brain translates physical activity into judgments about effort (i.e., "How effortful did that activity feel?"). Using modeling of behavior and neuroimaging, we show how the nervous system uses information about physical exertion to generate assessments of effort. We found that higher variability in exertion was associated with increases in assessments of effort, making participants judge efforts as more costly. GABA, the brain's main inhibitory neurotransmitter, moderated the influence of exertion variability on overassessments of effort. These findings illustrate how low-level features of motor performance and sensorimotor neurochemistry influence higher-order cognitive processes related to feelings of effort.


Assuntos
Esforço Físico , Córtex Sensório-Motor , Atividades Cotidianas , Mapeamento Encefálico , Feminino , Humanos , Masculino , Esforço Físico/fisiologia , Córtex Sensório-Motor/fisiologia , Ácido gama-Aminobutírico
7.
Dev Psychopathol ; : 1-13, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990408

RESUMO

Sensory differences and anxiety disorders are highly prevalent in autistic individuals with and without ADHD. Studies have shown that sensory differences and anxiety are associated and that intolerance of uncertainty (IU) plays an important role in this relationship. However, it is unclear as to how different levels of the sensory processing pathway (i.e., perceptual, affective, or behavioral) contribute. Here, we used psychophysics to assess how alterations in tactile perception contribute to questionnaire measures of sensory reactivity, IU, and anxiety. Thirty-eight autistic children (aged 8-12 years; 27 with co-occurring ADHD) were included. Consistent with previous findings, mediation analyses showed that child-reported IU fully mediated an association between parent-reported sensory reactivity and parent-reported anxiety and that anxiety partially mediated an association between sensory reactivity and IU. Of the vibrotactile thresholds, only simultaneous frequency discrimination (SFD) thresholds correlated with sensory reactivity. Interestingly, we found that sensory reactivity fully mediated an association between SFD threshold and anxiety, and between SFD threshold and IU. Taken together, those findings suggest a mechanistic pathway whereby tactile perceptual alterations contribute to sensory reactivity at the affective level, leading in turn to increased IU and anxiety. This stepwise association can inform potential interventions for IU and anxiety in autism.

8.
Mov Disord ; 37(3): 563-573, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854494

RESUMO

BACKGROUND: Individuals with Tourette syndrome (TS) often report that they express tics as a means of alleviating the experience of unpleasant sensations. These sensations are perceived as an urge to act and are referred to as premonitory urges. Premonitory urges have been the focus of recent efforts to develop interventions to reduce tic expression in those with TS. OBJECTIVE: The aim of this study was to examine the contribution of brain γ-aminobutyric acid (GABA) and glutamate levels of the right primary sensorimotor cortex (SM1), supplementary motor area (SMA), and insular cortex (insula) to tic and urge severity in children with TS. METHODS: Edited magnetic resonance spectroscopy was used to assess GABA+ (GABA + macromolecules) and Glx (glutamate + glutamine) of the right SM1, SMA, and insula in 68 children with TS (MAge = 10.59, SDAge = 1.33) and 41 typically developing control subjects (MAge = 10.26, SDAge = 2.21). We first compared GABA+ and Glx levels of these brain regions between groups. We then explored the association between regional GABA+ and Glx levels with urge and tic severity. RESULTS: GABA+ and Glx of the right SM1, SMA, and insula were comparable between the children with TS and typically developing control subjects. In children with TS, lower levels of SMA GABA+ were associated with more severe and more frequent premonitory urges. Neither GABA+ nor Glx levels were associated with tic severity. CONCLUSIONS: These results broadly support the role of GABAergic neurotransmission within the SMA in the experience of premonitory urges in children with TS. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Córtex Motor , Córtex Sensório-Motor , Transtornos de Tique , Tiques , Síndrome de Tourette , Criança , Pré-Escolar , Ácido Glutâmico , Humanos , Lactente , Córtex Motor/diagnóstico por imagem , Transtornos de Tique/complicações , Tiques/complicações , Síndrome de Tourette/complicações , Ácido gama-Aminobutírico
9.
AJR Am J Roentgenol ; 218(2): 321-332, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34406053

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition that leads to impaired attention and impulsive behaviors diagnosed in, but not limited to, children. ADHD can cause symptoms throughout life. This article summarizes the structural (conventional, volumetric, and diffusion tensor imaging) and functional (task-based functional MRI [fMRI], resting-state fMRI, PET, and MR spectroscopy) brain findings in patients with ADHD. Consensus is lacking regarding altered anatomic or functional imaging findings of the brain in children with ADHD, likely because of the heterogeneity of the disorder. Most anatomic studies report abnormalities in the frontal lobes, basal ganglia, and corpus callosum; decreased surface area in the left ventral frontal and right prefrontal cortex; thinner medial temporal lobes; and smaller caudate nuclei. Using fMRI, researchers have focused on the prefrontal and temporal regions, reflecting perception-action mapping alterations. Artificial intelligence models evaluating brain anatomy have highlighted changes in cortical thickness and the shape of the inferior frontal cortex, bilateral sensorimotor cortex, left temporal lobe, and insula. Early intervention and/or normal brain maturation can alter imaging patterns and convert functional imaging studies to a normal pattern. Although imaging findings provide insight into the neuropathophysiology of the disease, no definitive structural or functional pattern defines the disorder from a neuroradiologic perspective.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Mapeamento Encefálico/métodos , Diagnóstico por Imagem/métodos , Neuroimagem/métodos , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Humanos
10.
Cereb Cortex ; 31(12): 5526-5535, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34231840

RESUMO

Children with attention-deficit/hyperactivity disorder (ADHD) have previously shown a decreased magnitude of event-related desynchronization (ERD) during a finger-tapping task, with a large between-group effect. Because the neurobiology underlying several transcranial magnetic stimulation (TMS) measures have been studied in multiple contexts, we compared ERD and 3 TMS measures (resting motor threshold [RMT], short-interval cortical inhibition [SICI], and task-related up-modulation [TRUM]) within 14 participants with ADHD (ages 8-12 years) and 17 control children. The typically developing (TD) group showed a correlation between greater RMT and greater magnitude of alpha (10-13 Hz, here) ERD, and there was no diagnostic interaction effect, consistent with a rudimentary model of greater needed energy input to stimulate movement. Similarly, inhibition measured by SICI was also greater in the TD group when the magnitude of movement-related ERD was higher; there was a miniscule diagnostic interaction effect. Finally, TRUM during a response-inhibition task showed an unanticipated pattern: in TD children, the greater TMS task modulation (TRUM) was associated with a smaller magnitude of ERD during finger-tapping. The ADHD group showed the opposite direction of association: Greater TRUM was associated with larger magnitude of ERD. Prior EEG results have demonstrated specific alterations of task-related modulation of cortical physiology, and the current results provide a fulcrum for multimodal study.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Eletroencefalografia , Potencial Evocado Motor/fisiologia , Humanos , Movimento , Estimulação Magnética Transcraniana
11.
Behav Res Methods ; 54(3): 1530-1540, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34751923

RESUMO

The stop-signal paradigm has become ubiquitous in investigations of inhibitory control. Tasks inspired by the paradigm, referred to as stop-signal tasks, require participants to make responses on go trials and to inhibit those responses when presented with a stop-signal on stop trials. Currently, the most popular version of the stop-signal task is the 'choice-reaction' variant, where participants make choice responses, but must inhibit those responses when presented with a stop-signal. An alternative to the choice-reaction variant of the stop-signal task is the 'anticipated response inhibition' task. In anticipated response inhibition tasks, participants are required to make a planned response that coincides with a predictably timed event (such as lifting a finger from a computer key to stop a filling bar at a predefined target). Anticipated response inhibition tasks have some advantages over the more traditional choice-reaction stop-signal tasks and are becoming increasingly popular. However, currently, there are no openly available versions of the anticipated response inhibition task, limiting potential uptake. Here, we present an open-source, free, and ready-to-use version of the anticipated response inhibition task, which we refer to as the OSARI (the Open-Source Anticipated Response Inhibition) task.


Assuntos
Inibição Psicológica , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia
12.
Neuroimage ; 233: 117930, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711485

RESUMO

Balance between inhibitory and excitatory neurotransmitter systems and the protective role of the major antioxidant glutathione (GSH) are central to early healthy brain development. Disruption has been implicated in the early life pathophysiology of psychiatric disorders and neurodevelopmental conditions including Autism Spectrum Disorder. Edited magnetic resonance spectroscopy (MRS) methods such as HERMES have great potential for providing important new non-invasive insights into these crucial processes in human infancy. In this work, we describe a systematic approach to minimise the impact of specific technical challenges inherent to acquiring MRS data in a neonatal population, including automatic segmentation, full tissue-correction and optimised GABA+ fitting and consider the minimum requirements for a robust edited-MRS acquisition. With this approach we report for the first time simultaneous GABA+, Glx (glutamate + glutamine) and GSH concentrations in the neonatal brain (n = 18) in two distinct regions (thalamus and anterior cingulate cortex (ACC)) using edited MRS at 3T. The improved sensitivity provided by our method allows specific regional neurochemical differences to be identified including: significantly lower Glx and GSH ratios to total creatine in the thalamus compared to the ACC (p < 0.001 for both), and significantly higher GSH levels in the ACC following tissue-correction (p < 0.01). Furthermore, in contrast to adult GABA+ which can typically be accurately fitted with a single peak, all neonate spectra displayed a characteristic doublet GABA+ peak at 3 ppm, indicating a lower macromolecule (MM) contribution to the 3 ppm signal in neonates. Relatively high group-level variance shows the need to maximise voxel size/acquisition time in edited neonatal MRS acquisitions for robust estimation of metabolites. Application of this method to study how these levels and balance are altered by early-life brain injury or genetic risk can provide important new knowledge about the pathophysiology underlying neurodevelopmental disorders.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ácido gama-Aminobutírico/metabolismo , Encéfalo/diagnóstico por imagem , Feminino , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Humanos , Recém-Nascido , Masculino , Tálamo/diagnóstico por imagem , Tálamo/metabolismo
13.
Neuroimage ; 237: 118158, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991699

RESUMO

While it is widely accepted that motor sequence learning (MSL) is supported by a prefrontal-mediated interaction between hippocampal and striatal networks, it remains unknown whether the functional responses of these networks can be modulated in humans with targeted experimental interventions. The present proof-of-concept study employed a multimodal neuroimaging approach, including functional magnetic resonance (MR) imaging and MR spectroscopy, to investigate whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex can modulate responses in the hippocampus and the basal ganglia during motor learning. Our results indicate that while stimulation did not modulate motor performance nor task-related brain activity, it influenced connectivity patterns within hippocampo-frontal and striatal networks. Stimulation also altered the relationship between the levels of gamma-aminobutyric acid (GABA) in the stimulated prefrontal cortex and learning-related changes in both activity and connectivity in fronto-striato-hippocampal networks. This study provides the first experimental evidence, to the best of our knowledge, that brain stimulation can alter motor learning-related functional responses in the striatum and hippocampus.


Assuntos
Núcleo Caudado/fisiologia , Conectoma , Potencial Evocado Motor/fisiologia , Hipocampo/fisiologia , Atividade Motora/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Aprendizagem Seriada/fisiologia , Estimulação Magnética Transcraniana , Ácido gama-Aminobutírico/metabolismo , Adulto , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Estudo de Prova de Conceito , Adulto Jovem
14.
NMR Biomed ; 34(5): e4484, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33559967

RESUMO

The translation of MRS to clinical practice has been impeded by the lack of technical standardization. There are multiple methods of acquisition, post-processing, and analysis whose details greatly impact the interpretation of the results. These details are often not fully reported, making it difficult to assess MRS studies on a standardized basis. This hampers the reviewing of manuscripts, limits the reproducibility of study results, and complicates meta-analysis of the literature. In this paper a consensus group of MRS experts provides minimum guidelines for the reporting of MRS methods and results, including the standardized description of MRS hardware, data acquisition, analysis, and quality assessment. This consensus statement describes each of these requirements in detail and includes a checklist to assist authors and journal reviewers and to provide a practical way for journal editors to ensure that MRS studies are reported in full.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Relatório de Pesquisa/normas , Prova Pericial , Humanos , Software
15.
J Headache Pain ; 22(1): 150, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903165

RESUMO

BACKGROUND: An imbalance between inhibitory and excitatory neurometabolites has been implicated in chronic pain. Prior work identified elevated levels of Gamma-aminobutyric acid + macromolecules ("GABA+") using magnetic resonance spectroscopy (MRS) in people with migraine. What is not understood is whether this increase in GABA+ is a cause, or consequence of living with, chronic migraine. Therefore, to further elucidate the nature of the elevated GABA+ levels reported in migraine, this study aimed to observe how GABA+ levels change in response to changes in the clinical characteristics of migraine over time. METHODS: We observed people with chronic migraine (ICHD-3) over 3-months as their treatment was escalated in line with the Australian Pharmaceutical Benefits Scheme (PBS). Participants underwent an MRS scan and completed questionnaires regarding migraine frequency, intensity (HIT-6) and disability (WHODAS) at baseline and following the routine 3 months treatment escalation to provide the potential for some participants to recover. We were therefore able to monitor changes in brain neurochemistry as clinical characteristics potentially changed over time. RESULTS: The results, from 18 participants who completed both baseline and follow-up measures, demonstrated that improvements in migraine frequency, intensity and disability were associated with an increase in GABA+ levels in the anterior cingulate cortex (ACC); migraine frequency (r = - 0.51, p = 0.03), intensity (r = - 0.51, p = 0.03) and disability (r = - 0.53, p = 0.02). However, this was not seen in the posterior cingulate gyrus (PCG). An incidental observation found those who happened to have their treatment escalated with CGRP-monoclonal antibodies (CGRP-mAbs) (n = 10) had a greater increase in ACC GABA+ levels (mean difference 0.54 IU IQR [0.02 to 1.05], p = 0.05) and reduction in migraine frequency (mean difference 10.3 IQR [2.52 to 18.07], p = 0.01) compared to those who did not (n = 8). CONCLUSION: The correlation between an increase in ACC GABA+ levels with improvement in clinical characteristics of migraine, suggest previously reported elevated GABA+ levels may not be a cause of migraine, but a protective mechanism attempting to suppress further migraine attacks.


Assuntos
Giro do Cíngulo , Transtornos de Enxaqueca , Austrália , Giro do Cíngulo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Transtornos de Enxaqueca/diagnóstico por imagem , Ácido gama-Aminobutírico
16.
Neuroimage ; 210: 116532, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31958584

RESUMO

BACKGROUND: A proposed mechanism of chronic pain is dysregulation between the main inhibitory (GABA) and excitatory (glutamate) neurometabolites of the central nervous system. The level of these neurometabolites appears to differ in individual studies of people with pain compared to pain-free controls across different pain conditions. However, this has yet to be systematically investigated. AIMS: To establish whether GABA, glutamate, glutamine and Glx levels differ across pain conditions when compared to pain-free controls. METHODS: Five databases were searched. Studies were included if they investigated: 1) A pain condition compared to control. 2) Reported GABA, glutamate, glutamine or glutamate/glutamine level. 3) Used 1H-Magnetic Resonance Spectroscopy (Prospero Project ID CRD42018092170). Data extracted included neurometabolite level, pain diagnosis, and spectroscopy parameters. Meta-analyses were conducted to establish the difference in neurometabolite level between participants with pain and pain-free controls for different pain conditions. The MRS-Q was developed from existing clinical consensus to allow for the assessment of quality in the included studies. RESULTS: Thirty-five studies were included investigating combinations of migraine (n = 11), musculoskeletal pain (n = 8), chronic pain syndromes (n = 9) and miscellaneous pain (n = 10). Higher GABA levels were found in participants with migraine compared to controls (Hedge's G 0.499, 95%CI: 0.2 to 0.798). In contrast, GABA levels in musculoskeletal pain conditions (Hedge's G -0.189, 95%CI: 0.530 to 0.153) and chronic pain syndromes (Hedge's G 0.077, 95%CI: 1.612 to 1.459) did not differ from controls. Results for other brain neurometabolites revealed significantly higher levels for glutamate in participants with migraine and Glx in chronic pain syndromes compared to controls. CONCLUSION: These results support the theory that underlying neurometabolite levels may be unique in different pain conditions and therefore representative of biomarkers for specific pain conditions.


Assuntos
Dor Crônica/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Transtornos de Enxaqueca/metabolismo , Dor Musculoesquelética/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ácido gama-Aminobutírico/metabolismo , Dor Crônica/diagnóstico por imagem , Humanos , Transtornos de Enxaqueca/diagnóstico por imagem , Dor Musculoesquelética/diagnóstico por imagem
17.
Hum Brain Mapp ; 41(13): 3680-3695, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583940

RESUMO

Previous research in young adults has demonstrated that both motor learning and transcranial direct current stimulation (tDCS) trigger decreases in the levels of gamma-aminobutyric acid (GABA) in the sensorimotor cortex, and these decreases are linked to greater learning. Less is known about the role of GABA in motor learning in healthy older adults, a knowledge gap that is surprising given the established aging-related reductions in sensorimotor GABA. Here, we examined the effects of motor learning and subsequent tDCS on sensorimotor GABA levels and resting-state functional connectivity in the brains of healthy older participants. Thirty-six older men and women completed a motor sequence learning task before receiving anodal or sham tDCS to the sensorimotor cortex. GABA-edited magnetic resonance spectroscopy of the sensorimotor cortex and resting-state (RS) functional magnetic resonance imaging data were acquired before and after learning/stimulation. At the group level, neither learning nor anodal tDCS significantly modulated GABA levels or RS connectivity among task-relevant regions. However, changes in GABA levels from the baseline to post-learning session were significantly related to motor learning magnitude, age, and baseline GABA. Moreover, the change in functional connectivity between task-relevant regions, including bilateral motor cortices, was correlated with baseline GABA levels. These data collectively indicate that motor learning-related decreases in sensorimotor GABA levels and increases in functional connectivity are limited to those older adults with higher baseline GABA levels and who learn the most. Post-learning tDCS exerted no influence on GABA levels, functional connectivity or the relationships among these variables in older adults.


Assuntos
Envelhecimento/fisiologia , Conectoma , Espectroscopia de Ressonância Magnética , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Sensório-Motor/fisiologia , Aprendizagem Seriada/fisiologia , Estimulação Transcraniana por Corrente Contínua , Ácido gama-Aminobutírico/metabolismo , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/metabolismo
18.
Radiology ; 295(1): 171-180, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32043950

RESUMO

Background The hardware and software differences between MR vendors and individual sites influence the quantification of MR spectroscopy data. An analysis of a large data set may help to better understand sources of the total variance in quantified metabolite levels. Purpose To compare multisite quantitative brain MR spectroscopy data acquired in healthy participants at 26 sites by using the vendor-supplied single-voxel point-resolved spectroscopy (PRESS) sequence. Materials and Methods An MR spectroscopy protocol to acquire short-echo-time PRESS data from the midparietal region of the brain was disseminated to 26 research sites operating 3.0-T MR scanners from three different vendors. In this prospective study, healthy participants were scanned between July 2016 and December 2017. Data were analyzed by using software with simulated basis sets customized for each vendor implementation. The proportion of total variance attributed to vendor-, site-, and participant-related effects was estimated by using a linear mixed-effects model. P values were derived through parametric bootstrapping of the linear mixed-effects models (denoted Pboot). Results In total, 296 participants (mean age, 26 years ± 4.6; 155 women and 141 men) were scanned. Good-quality data were recorded from all sites, as evidenced by a consistent linewidth of N-acetylaspartate (range, 4.4-5.0 Hz), signal-to-noise ratio (range, 174-289), and low Cramér-Rao lower bounds (≤5%) for all of the major metabolites. Among the major metabolites, no vendor effects were found for levels of myo-inositol (Pboot > .90), N-acetylaspartate and N-acetylaspartylglutamate (Pboot = .13), or glutamate and glutamine (Pboot = .11). Among the smaller resonances, no vendor effects were found for ascorbate (Pboot = .08), aspartate (Pboot > .90), glutathione (Pboot > .90), or lactate (Pboot = .28). Conclusion Multisite multivendor single-voxel MR spectroscopy studies performed at 3.0 T can yield results that are coherent across vendors, provided that vendor differences in pulse sequence implementation are accounted for in data analysis. However, the site-related effects on variability were more profound and suggest the need for further standardization of spectroscopic protocols. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Encéfalo/metabolismo , Comércio , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Estudos Prospectivos , Adulto Jovem
19.
NMR Biomed ; 33(10): e4368, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32656879

RESUMO

An algorithm for retrospective correction of frequency and phase offsets in MRS data is presented. The algorithm, termed robust spectral registration (rSR), contains a set of subroutines designed to robustly align individual transients in a given dataset even in cases of significant frequency and phase offsets or unstable lipid contamination and residual water signals. Data acquired by complex multiplexed editing approaches with distinct subspectral profiles are also accurately aligned. Automated removal of unstable lipid contamination and residual water signals is applied first, when needed. Frequency and phase offsets are corrected in the time domain by aligning each transient to a weighted average reference in a statistically optimal order using nonlinear least-squares optimization. The alignment of subspectra in edited datasets is performed using an approach that specifically targets subtraction artifacts in the frequency domain. Weighted averaging is then used for signal averaging to down-weight poorer-quality transients. Algorithm performance was assessed on one simulated and 67 in vivo pediatric GABA-/GSH-edited HERMES datasets and compared with the performance of a multistep correction method previously developed for aligning HERMES data. The performance of the novel approach was quantitatively assessed by comparing the estimated frequency/phase offsets against the known values for the simulated dataset or by examining the presence of subtraction artifacts in the in vivo data. Spectral quality was improved following robust alignment, especially in cases of significant spectral distortion. rSR reduced more subtraction artifacts than the multistep method in 64% of the GABA difference spectra and 75% of the GSH difference spectra. rSR overcomes the major challenges of frequency and phase correction.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética , Criança , Bases de Dados como Assunto , Glutationa , Humanos , Lipídeos/análise , Processamento de Sinais Assistido por Computador , Água/química , Ácido gama-Aminobutírico
20.
J Neurosci ; 38(36): 7844-7851, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30064995

RESUMO

Healthy aging is accompanied by motor inhibition deficits that involve a slower process of stopping a prepotent motor response (i.e., reactive inhibition) rather than a diminished ability to anticipate stopping (i.e., proactive inhibition). Some studies suggest that efficient motor inhibition is related to GABAergic function. Since age-related alterations in the GABA system have also been reported, motor inhibition impairments might be linked to GABAergic alterations in the cortico-subcortical network that mediates motor inhibition. Thirty young human adults (mean age, 23.2 years; age range, 18-34 years; 14 men) and 29 older human adults (mean age, 67.5 years; age range, 60-74 years; 13 men) performed a stop-signal task with varying levels of stop-signal probability. GABA+ levels were measured with magnetic resonance spectroscopy (MRS) in right inferior frontal cortex, pre-supplementary motor area (pre-SMA), left sensorimotor cortex, bilateral striatum, and occipital cortex. We found that reactive inhibition was worse in older adults compared with young adults, as indicated by longer stop-signal reaction times (SSRTs). No group differences in proactive inhibition were observed as both groups slowed down their response to a similar degree with increasing stop-signal probability. The MRS results showed that tissue-corrected GABA+ levels were on average lower in older as compared with young adults. Moreover, older adults with lower GABA+ levels in the pre-SMA were slower at stopping (i.e., had longer SSRTs). These findings suggest a role for the GABA system in reactive inhibition deficits.SIGNIFICANCE STATEMENT Inhibitory control has been shown to diminish as a consequence of aging. We investigated whether the ability to stop a prepotent motor response and the ability to prepare to stop were related to GABA levels in different regions of the network that was previously identified to mediate inhibitory control. Overall, we found lower GABA levels in older adults compared with young adults. Importantly, those older adults who were slower at stopping had less GABA in the pre-supplementary motor area, a key node of the inhibitory control network. We propose that deficits in the stop process in part depend on the integrity of the GABA system.


Assuntos
Encéfalo/metabolismo , Função Executiva/fisiologia , Inibição Psicológica , Ácido gama-Aminobutírico/metabolismo , Adolescente , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tempo de Reação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA