Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Blood ; 143(15): 1445-1454, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874916

RESUMO

ABSTRACT: Unique among coagulation factors, the coagulation factor XI (FXI) arose through a duplication of the gene KLKB1, which encodes plasma prekallikrein. This evolutionary origin sets FXI apart structurally because it is a homodimer with 2 identical subunits composed of 4 apple and 1 catalytic domain. Each domain exhibits unique affinities for binding partners within the coagulation cascade, regulating the conversion of FXI to a serine protease as well as the selectivity of substrates cleaved by the active form of FXI. Beyond serving as the molecular nexus for the extrinsic and contact pathways to propagate thrombin generation by way of activating FIX, the function of FXI extends to contribute to barrier function, platelet activation, inflammation, and the immune response. Herein, we critically review the current understanding of the molecular biology of FXI, touching on some functional consequences at the cell, tissue, and organ level. We conclude each section by highlighting the DNA mutations within each domain that present as FXI deficiency. Together, a narrative review of the structure-function of the domains of FXI is imperative to understand the etiology of hemophilia C as well as to identify regions of FXI to safely inhibit the pathological function of activation or activity of FXI without compromising the physiologic role of FXI.


Assuntos
Deficiência do Fator XI , Fator XI , Humanos , Fator XI/genética , Deficiência do Fator XI/genética , Coagulação Sanguínea/genética , Domínio Catalítico , Trombina/metabolismo , Biologia
2.
Blood ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39158072

RESUMO

Loss of endothelial barrier function contributes to the pathophysiology of many inflammatory diseases. Coagulation factor XI (FXI) plays a regulatory role in inflammation. While activation of FXI increases vascular permeability in vivo, the mechanism by which FXI or its activated form FXIa disrupts endothelial barrier function is unknown. We investigated the role of FXIa in human umbilical vein endothelial cell (HUVEC) or human aortic endothelial cell (HAEC) permeability. The expression patterns of vascular endothelial (VE)-cadherin and other proteins of interest were examined by Western blot or immunofluorescence. Endothelial cell permeability was analyzed by transwell assay. We demonstrate that FXIa increases endothelial cell permeability by inducing cleavage of the VE-cadherin extracellular domain, releasing a soluble fragment. The activation of a disintegrin and metalloproteinase 10 (ADAM10) mediates the FXIa-dependent cleavage of VE-cadherin, as adding an ADAM10 inhibitor prevented the cleavage of VE-cadherin induced by FXIa. The binding of FXIa with plasminogen activator inhibitor 1 and very low-density lipoprotein receptor on HUVEC or HAEC surfaces activates vascular endothelial growth receptor factor 2 (VEGFR2). The activation of VEGFR2 triggers the MAPK signaling pathway and promotes the expression of active ADAM10 on the cell surface. In a pilot experiment using an established baboon model of sepsis, the inhibition of FXI activation significantly decreased the levels of soluble VE-cadherin to preserve barrier function. This study reveals a novel pathway by which FXIa regulates vascular permeability. The effect of FXIa on barrier function may be another way by which FXIa contributes to the development of inflammatory diseases.

3.
Arterioscler Thromb Vasc Biol ; 44(1): 290-299, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970718

RESUMO

BACKGROUND: Despite the ubiquitous utilization of central venous catheters in clinical practice, their use commonly provokes thromboembolism. No prophylactic strategy has shown sufficient efficacy to justify routine use. Coagulation factors FXI (factor XI) and FXII (factor XII) represent novel targets for device-associated thrombosis, which may mitigate bleeding risk. Our objective was to evaluate the safety and efficacy of an anti-FXI mAb (monoclonal antibody), gruticibart (AB023), in a prospective, single-arm study of patients with cancer receiving central line placement. METHODS: We enrolled ambulatory cancer patients undergoing central line placement to receive a single dose of gruticibart (2 mg/kg) administered through the venous catheter within 24 hours of placement and a follow-up surveillance ultrasound at day 14 for evaluation of catheter thrombosis. A parallel, noninterventional study was used as a comparator. RESULTS: In total, 22 subjects (n=11 per study) were enrolled. The overall incidence of catheter-associated thrombosis was 12.5% in the interventional study and 40.0% in the control study. The anti-FXI mAb, gruticibart, significantly prolonged the activated partial thromboplastin time in all subjects on day 14 compared with baseline (P<0.001). Gruticibart was well tolerated and without infusion reactions, drug-related adverse events, or clinically relevant bleeding. Platelet flow cytometry demonstrated no difference in platelet activation following administration of gruticibart. T (thrombin)-AT (antithrombin) and activated FXI-AT complexes increased following central line placement in the control study, which was not demonstrated in our intervention study. CRP (C-reactive protein) did not significantly increase on day 14 in those who received gruticibart, but it did significantly increase in the noninterventional study. CONCLUSIONS: FXI inhibition with gruticibart was well tolerated without any significant adverse or bleeding-related events and resulted in a lower incidence of catheter-associated thrombosis on surveillance ultrasound compared with the published literature and our internal control study. These findings suggest that targeting FXI could represent a safe intervention to prevent catheter thrombosis. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04465760.


Assuntos
Neoplasias , Trombose , Humanos , Fator XI/metabolismo , Estudos Prospectivos , Trombose/etiologia , Trombose/prevenção & controle , Trombose/tratamento farmacológico , Hemorragia/induzido quimicamente , Catéteres/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/complicações
4.
Curr Opin Hematol ; 31(1): 32-38, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694771

RESUMO

PURPOSE OF REVIEW: This review summarizes the pathophysiology and potential therapeutic options for treatment of multiple sclerosis, a common neuronal demyelinating disorder affecting 2.2 million people worldwide. As an autoimmune disorder, multiple sclerosis is associated with neuroinflammation and increased permeability of the blood-brain barrier (BBB), although the cause linking multiple sclerosis with compromised barrier function remains ill-defined. It has been previously shown that coagulation factors, including thrombin and fibrin, exacerbate the inflammatory processes and permeability of the BBB. RECENT FINDINGS: Increased levels of the coagulation factor (F) XII have been found in patients presenting with relapsing-remitting multiple sclerosis, with a deleterious role for FXII being validated in murine model of multiple sclerosis, experimental autoimmune encephalitis (EAE). Recent work has uncovered a role for the major substrate activated by FXII and thrombin, FXI, in the disorder of EAE. The study found that pharmacological targeting of FXI decreased clinical symptoms, lymphocyte invasion, and white matter destruction in a multiple sclerosis model. SUMMARY: This review emphasizes the role of FXII and FXI in regulating barrier function and the immune response in neuroinflammation. These new findings broaden the potential for therapeutic utility of FXI inhibitors beyond thrombosis to include neuroinflammatory diseases associated with compromised BBB function, including multiple sclerosis.


Assuntos
Fator XI , Esclerose Múltipla , Humanos , Animais , Camundongos , Fator XII , Doenças Neuroinflamatórias , Trombina , Esclerose Múltipla/tratamento farmacológico
5.
Semin Thromb Hemost ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940715

RESUMO

Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation. While FXIa is canonically known for activating the intrinsic pathway of coagulation by catalyzing the conversion of FIX into FIXa, it is promiscuous in nature and has been shown to contribute to thrombin generation independent of FIX. In addition to its role in the intrinsic pathway of coagulation, FXI also interacts with platelets, endothelial cells, and mediates the inflammatory response through activation of FXII and cleavage of high-molecular-weight kininogen to generate bradykinin. In this manuscript, we critically review the current body of knowledge surrounding how FXI navigates the interplay of hemostasis, inflammatory processes, and the immune response and highlight future avenues for research. As FXI continues to be clinically explored as a druggable therapeutic target, understanding how this coagulation factor fits into physiological and disease mechanisms becomes increasingly important.

6.
Semin Thromb Hemost ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37044117

RESUMO

Hemorrhage remains a major complication of anticoagulants, with bleeding leading to serious and even life-threatening outcomes in rare settings. Currently available anticoagulants target either multiple coagulation factors or specifically coagulation factor (F) Xa or thrombin; however, inhibiting these pathways universally impairs hemostasis. Bleeding complications are especially salient in the medically complex population who benefit from medical devices. Extracorporeal devices-such as extracorporeal membrane oxygenation, hemodialysis, and cardiac bypass-require anticoagulation for optimal use. Nonetheless, bleeding complications are common, and with certain devices, highly morbid. Likewise, pharmacologic prophylaxis to prevent thrombosis is not commonly used with many medical devices like central venous catheters due to high rates of bleeding. The contact pathway members FXI, FXII, and prekallikrein serve as a nexus, connecting biomaterial surface-mediated thrombin generation and inflammation, and may represent safe, druggable targets to improve medical device hemocompatibility and thrombogenicity. Recent in vivo and clinical data suggest that selectively targeting the contact pathway of coagulation through the inhibition of FXI and FXII can reduce the incidence of medical device-associated thrombotic events, and potentially systemic inflammation, without impairing hemostasis. In the following review, we will outline the current in vivo and clinical data encompassing the mechanism of action of drugs targeting the contact pathway. This new class of inhibitors has the potential to herald a new era of effective and low-risk anticoagulation for the management of patients requiring the use of medical devices.

7.
Blood ; 138(2): 178-189, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33598692

RESUMO

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen. Activation of several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels exhibited a profound increase in the untreated animals but not in the treated animals. The antibody also blocked the increase in plasma biomarkers of inflammation and cell damage, including tumor necrosis factor, interleukin (IL)-1ß, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, nucleosomes, and myeloperoxidase. Based on clinical presentation and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms and were asymptomatic at day 7, whereas untreated control animals suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-inactivated S aureus.


Assuntos
Fator XII/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/microbiologia , Staphylococcus aureus/fisiologia , Animais , Anticorpos/uso terapêutico , Transtornos da Coagulação Sanguínea/complicações , Transtornos da Coagulação Sanguínea/imunologia , Transtornos da Coagulação Sanguínea/microbiologia , Plaquetas/metabolismo , Microambiente Celular , Ativação do Complemento , Fator XII/imunologia , Feminino , Fibrinogênio/metabolismo , Temperatura Alta , Inflamação/complicações , Inflamação/patologia , Masculino , Insuficiência de Múltiplos Órgãos/imunologia , Papio , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Análise de Sobrevida
8.
J Immunol ; 206(8): 1784-1792, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811105

RESUMO

Complement factor H (CFH) is the major inhibitor of the alternative pathway of the complement system and is structurally related to beta2-glycoprotein I, which itself is known to bind to ligands, including coagulation factor XI (FXI). We observed reduced complement activation when FXI activation was inhibited in a baboon model of lethal systemic inflammation, suggesting cross-talk between FXI and the complement cascade. It is unknown whether FXI or its activated form, activated FXI (FXIa), directly interacts with the complement system. We explored whether FXI could interact with and inhibit the activity of CFH. We found that FXIa neutralized CFH by cleavage of the R341/R342 bonds. FXIa reduced the capacity of CFH to enhance the cleavage of C3b by factor I and the decay of C3bBb. The binding of CFH to human endothelial cells was also reduced after incubating CFH with FXIa. The addition of either short- or long-chain polyphosphate enhanced the capacity of FXIa to cleave CFH. FXIa also cleaved CFH that was present on endothelial cells and in the secretome from blood platelets. The generation of FXIa in plasma induced the cleavage of CFH. Moreover, FXIa reduced the cleavage of C3b by factor I in serum. Conversely, we observed that CFH inhibited FXI activation by either thrombin or FXIIa. Our study provides, to our knowledge, a novel molecular link between the contact pathway of coagulation and the complement system. These results suggest that FXIa generation enhances the activity of the complement system and thus may potentiate the immune response.


Assuntos
Plaquetas/metabolismo , Fator H do Complemento/metabolismo , Células Endoteliais/metabolismo , Fator XIa/metabolismo , Inflamação/metabolismo , Animais , Coagulação Sanguínea , Complemento C3b/metabolismo , Via Alternativa do Complemento , Fibrinogênio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Papio , Ligação Proteica , Receptor Cross-Talk
9.
Am J Physiol Cell Physiol ; 320(3): C365-C374, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471623

RESUMO

Factor XI (FXI) has been shown to bind platelets, but the functional significance of this observation remains unknown. Platelets are essential for hemostasis and play a critical role in thrombosis, whereas FXI is not essential for hemostasis but promotes thrombosis. An apparent functional contradiction, platelets are known to support thrombin generation, yet platelet granules release protease inhibitors, including those of activated FXI (FXIa). We aim to investigate the secretory and binding mechanisms by which platelets could support or inhibit FXIa activity. The presence of platelets enhanced FXIa activity in a purified system and increased coagulation Factor IX (FIX) activation by FXIa and fibrin generation in human plasma. In contrast, platelets reduced the activation of FXI by activated coagulation factor XII (FXIIa) and the activation of FXII by kallikrein (PKa). Incubation of FXIa with the platelet secretome, which contains FXIa inhibitors, such as protease nexin-II, abolished FXIa activity, yet in the presence of activated platelets, the secretome was not able to block the activity of FXIa. FXIa variants lacking the anion-binding sites did not alter the effect of platelets on FXIa activity or interaction. Western blot analysis of bound FXIa [by FXIa-platelet membrane immunoprecipitation] showed that the interaction with platelets is zinc dependent and, unlike FXI binding to platelets, not dependent on glycoprotein Ib. FXIa binding to the platelet membrane increases its capacity to activate FIX in plasma likely by protecting it from inhibition by inhibitors secreted by activated platelets. Our findings suggest that an interaction of FXIa with the platelet surface may induce an allosteric modulation of FXIa.


Assuntos
Plaquetas/metabolismo , Fator XIa/metabolismo , Adolescente , Precursor de Proteína beta-Amiloide/metabolismo , Sítios de Ligação/fisiologia , Coagulação Sanguínea/fisiologia , Feminino , Hemostasia/fisiologia , Humanos , Masculino , Trombina/metabolismo , Trombose/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 39(7): 1390-1401, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31242030

RESUMO

Objective- Activation of coagulation FXI (factor XI) by FXIIa (activated factor XII) is a prothrombotic process. The endothelium is known to play an antithrombotic role by limiting thrombin generation and platelet activation. It is unknown whether the antithrombotic role of the endothelium includes sequestration of FXIa (activated factor XI) activity. This study aims to determine the role of endothelial cells (ECs) in the regulation of the intrinsic pathway of coagulation. Approach and Results- Using a chromogenic assay, we observed that human umbilical veins ECs selectively blocked FXIa yet supported kallikrein and FXIIa activity. Western blotting and mass spectrometry analyses revealed that FXIa formed a complex with endothelial PAI-1 (plasminogen activator inhibitor-1). Blocking endothelial PAI-1 increased the cleavage of a chromogenic substrate by FXIa and the capacity of FXIa to promote fibrin formation in plasma. Western blot and immunofluorescence analyses showed that FXIa-PAI-1 complexes were either released into the media or trafficked to the early and late endosomes and lysosomes of ECs. When baboons were challenged with Staphylococcus aureus to induce a prothrombotic phenotype, an increase in circulating FXIa-PAI-1 complex levels was detected by ELISA within 2 to 8 hours postchallenge. Conclusions- PAI-1 forms a complex with FXIa on ECs, blocking its activity and inducing the clearance and degradation of FXIa. Circulating FXIa-PAI-1 complexes were detected in a baboon model of S. aureus sepsis. Although ECs support kallikrein and FXIIa activity, inhibition of FXIa by ECs may promote the clearance of intravascular FXIa. Visual Overview- An online visual overview is available for this article.


Assuntos
Coagulação Sanguínea , Células Endoteliais/fisiologia , Fator XIa/fisiologia , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Animais , Fator XIa/antagonistas & inibidores , Fator XIa/química , Humanos , Papio ursinus , Inibidor 1 de Ativador de Plasminogênio/química
11.
Arterioscler Thromb Vasc Biol ; 39(4): 799-809, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700130

RESUMO

Objective- Factor XI (FXI) contributes to thrombotic disease while playing a limited role in normal hemostasis. We generated a unique, humanized anti-FXI antibody, AB023, which blocks factor XIIa-mediated FXI activation without inhibiting FXI activation by thrombin or the procoagulant function of FXIa. We sought to confirm the antithrombotic activity of AB023 in a baboon thrombosis model and to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics in healthy adult subjects. Approach and Results- In a primate model of acute vascular graft thrombosis, AB023 reduced platelet and fibrin accumulation within the grafts by >75%. To evaluate the safety of AB023, we performed a first-in-human study in healthy adult volunteers without any serious adverse events. Overall, 10 of 21 (48%) subjects experienced 20 treatment-emergent adverse events, with 7 of 16 (44%) subjects following active treatment and 3 of 5 (60%) subjects following placebo. AB023 did not increase bleeding or prothrombin times. Anticoagulation was verified by a saturable ≈2-fold prolongation of the partial thromboplastin time for over 1 month after the highest dose. Conclusions- AB023, which inhibits contact activation-initiated blood coagulation in vitro and experimental thrombus formation in primates, produced a dose-dependent duration of limited anticoagulation without drug-related adverse effects in a phase 1 trial. When put in context with earlier observations suggesting that FXI contributes to venous thromboembolism and cardiovascular disease, although contributing minimally to hemostasis, our data further justify clinical evaluation of AB023 in conditions where contact-initiated FXI activation is suspected to have a pathogenic role. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT03097341.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticoagulantes/uso terapêutico , Fator XI/antagonistas & inibidores , Fator XIa/fisiologia , Fibrinolíticos/uso terapêutico , Adulto , Animais , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticoagulantes/efeitos adversos , Anticoagulantes/imunologia , Anticoagulantes/farmacologia , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Fator XI/imunologia , Fator XIIa/fisiologia , Fibrinolíticos/efeitos adversos , Fibrinolíticos/imunologia , Fibrinolíticos/farmacologia , Oclusão de Enxerto Vascular/tratamento farmacológico , Humanos , Papio , Tempo de Tromboplastina Parcial
12.
Semin Thromb Hemost ; 45(5): 502-508, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31216587

RESUMO

Although anticoagulation without hemorrhage is a primary aim, this vision has remained as yet out of reach. Even despite the superior safety profile of the direct oral anticoagulants, hemorrhage remains a major risk of anticoagulation. Selective inhibition of the contact pathway of coagulation, specifically coagulation factor XI (FXI) and/or factor XII (FXII), has now substantial epidemiologic and preclinical data supporting the notion that these factors contribute to pathologic thrombosis and are yet primarily dispensable for in vivo hemostasis. In this way, targeting FXI and FXII may revolutionize the future anticoagulation landscape. Several drugs are under development for this purpose, including: ISIS 416858, a FXI antisense oligonucleotide which impairs hepatic synthesis of FXI; MAA868, a monoclonal antibody that binds the procoagulant enzymatic site of both zymogen and activated FXI (FXIa); BAY 1213790, a monoclonal antibody that binds the procoagulant enzymatic site of FXIa only; and AB023, a monoclonal antibody that inhibits activated FXII-mediated activation of FXI, along with two small molecules in clinical trials. Each of these drugs have demonstrated favorable safety profiles in their phases 1 and 2 studies to date, with preclinical data also supporting efficacy of abrogating thrombosis in various animal models. Other benefits of some of these drugs include once-monthly dosing and safety in patients with renal or hepatic impairment, while others offer quickly metabolized parenteral options, thus providing more convenient and widely available anticoagulation options. Though still far from the marketplace, drugs targeting FXI and FXII have the potential to usher in a new era of anticoagulation therapy.


Assuntos
Anticoagulantes/uso terapêutico , Ensaios Clínicos como Assunto , Fator XII/metabolismo , Fator XI/metabolismo , Hemostasia/efeitos dos fármacos , Trombose/sangue , Anticoagulantes/farmacologia , Humanos
13.
Arterioscler Thromb Vasc Biol ; 38(8): 1748-1760, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30354195

RESUMO

Objective- Terminal complications of bacterial sepsis include development of disseminated intravascular consumptive coagulopathy. Bacterial constituents, including long-chain polyphosphates (polyP), have been shown to activate the contact pathway of coagulation in plasma. Recent work shows that activation of the contact pathway in flowing whole blood promotes thrombin generation and platelet activation and consumption distal to thrombus formation ex vivo and in vivo. Here, we sought to determine whether presence of long-chain polyP or bacteria in the bloodstream promotes platelet activation and consumption in a coagulation factor (F)XII-dependent manner. Approach and Results- Long-chain polyP promoted platelet P-selectin expression, microaggregate formation, and platelet consumption in flowing whole blood in a contact activation pathway-dependent manner. Moreover, long-chain polyP promoted local fibrin formation on collagen under shear flow in a FXI-dependent manner. Distal to the site of thrombus formation, platelet consumption was dramatically enhanced in the presence of long-chain polyP in the blood flow in a FXI- and FXII-dependent manner. In a murine model, long-chain polyP promoted platelet deposition and fibrin generation in lungs in a FXII-dependent manner. In a nonhuman primate model of bacterial sepsis, pre-treatment of animals with an antibody blocking FXI activation by FXIIa reduced lethal dose100 Staphylococcus aureus-induced platelet and fibrinogen consumption. Conclusions- This study demonstrates that bacterial-type long-chain polyP promotes platelet activation in a FXII-dependent manner in flowing blood, which may contribute to sepsis-associated thrombotic processes, consumptive coagulopathy, and thrombocytopenia.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Fator XII/metabolismo , Fator XIIa/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Polifosfatos/toxicidade , Trombose/induzido quimicamente , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Fator XII/genética , Fator XIIa/genética , Feminino , Fibrina/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papio ursinus , Pré-Calicreína/genética , Pré-Calicreína/metabolismo , Embolia Pulmonar/sangue , Embolia Pulmonar/induzido quimicamente , Embolia Pulmonar/genética , Sepse/sangue , Sepse/microbiologia , Transdução de Sinais/efeitos dos fármacos , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/microbiologia , Trombose/sangue , Trombose/genética , Calicreínas Teciduais/genética , Calicreínas Teciduais/metabolismo
14.
J Biol Chem ; 292(21): 8616-8629, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28408624

RESUMO

Activated protein C (APC) is a multifunctional serine protease with anticoagulant, cytoprotective, and anti-inflammatory activities. In addition to the cytoprotective effects of APC on endothelial cells, podocytes, and neurons, APC cleaves and detoxifies extracellular histones, a major component of neutrophil extracellular traps (NETs). NETs promote pathogen clearance but also can lead to thrombosis; the pathways that negatively regulate NETosis are largely unknown. Thus, we studied whether APC is capable of directly inhibiting NETosis via receptor-mediated cell signaling mechanisms. Here, by quantifying extracellular DNA or myeloperoxidase, we demonstrate that APC binds human leukocytes and prevents activated platelet supernatant or phorbol 12-myristate 13-acetate (PMA) from inducing NETosis. Of note, APC proteolytic activity was required for inhibiting NETosis. Moreover, antibodies against the neutrophil receptors endothelial protein C receptor (EPCR), protease-activated receptor 3 (PAR3), and macrophage-1 antigen (Mac-1) blocked APC inhibition of NETosis. Select mutations in the Gla and protease domains of recombinant APC caused a loss of NETosis. Interestingly, pretreatment of neutrophils with APC prior to induction of NETosis inhibited platelet adhesion to NETs. Lastly, in a nonhuman primate model of Escherichia coli-induced sepsis, pretreatment of animals with APC abrogated release of myeloperoxidase from neutrophils, a marker of neutrophil activation. These findings suggest that the anti-inflammatory function of APC at therapeutic concentrations may include the inhibition of NETosis in an EPCR-, PAR3-, and Mac-1-dependent manner, providing additional mechanistic insight into the diverse functions of neutrophils and APC in disease states including sepsis.


Assuntos
Armadilhas Extracelulares/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Proteína C/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Modelos Animais de Doenças , Receptor de Proteína C Endotelial , Escherichia coli , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/imunologia , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Antígeno de Macrófago 1/imunologia , Antígeno de Macrófago 1/metabolismo , Masculino , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/metabolismo , Papio anubis , Proteína C/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Sepse/sangue , Sepse/imunologia , Acetato de Tetradecanoilforbol/farmacologia
15.
Blood ; 125(9): 1488-96, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25587039

RESUMO

Activation of coagulation factor XI (FXI) may play a role in hemostasis. The primary substrate of activated FXI (FXIa) is FIX, leading to FX activation (FXa) and thrombin generation. However, recent studies suggest the hemostatic role of FXI may not be restricted to the activation of FIX. We explored whether FXI could interact with and inhibit the activity of tissue factor pathway inhibitor (TFPI). TFPI is an essential reversible inhibitor of activated factor X (FXa) and also inhibits the FVIIa-TF complex. We found that FXIa neutralized both endothelium- and platelet-derived TFPI by cleaving the protein between the Kunitz (K) 1 and K2 domains (Lys86/Thr87) and at the active sites of the K2 (Arg107/Gly108) and K3 (Arg199/Ala200) domains. Addition of FXIa to plasma was able to reverse the ability of TFPI to prolong TF-initiated clotting times in FXI- or FIX-deficient plasma, as well as FXa-initiated clotting times in FX-deficient plasma. Treatment of cultured endothelial cells with FXIa increased the generation of FXa and promoted TF-dependent fibrin formation in recalcified plasma. Together, these results suggest that the hemostatic role of FXIa may be attributed not only to activation of FIX but also to promoting the extrinsic pathway of thrombin generation through inactivation of TFPI.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Fator IX/metabolismo , Fator XIa/metabolismo , Fator Xa/metabolismo , Fibrina/metabolismo , Lipoproteínas/metabolismo , Plaquetas/citologia , Western Blotting , Células Cultivadas , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipoproteínas/genética , Mutação/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Platelets ; 28(5): 449-456, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28358586

RESUMO

The integration of biomaterials and understanding of vascular biology has led to the development of perfusable endothelialized flow models, which have been used as valuable tools to study the platelet-endothelium interface under shear. In these models, the parameters of geometry, compliance, biorheology, and cellular complexity are varied to recapitulate the physical biology of platelet recruitment and activation under physiologically relevant conditions of blood flow. In this review, we summarize the mechanistic insights learned from perfusable microvessel models and discuss the potential utility as well as challenges of endothelialized microfluidic devices to study platelet function in the bloodstream in vitro.


Assuntos
Plaquetas/metabolismo , Endotélio Vascular/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Modelos Cardiovasculares , Ativação Plaquetária , Animais , Velocidade do Fluxo Sanguíneo , Humanos , Microvasos/metabolismo , Microvasos/fisiopatologia
17.
Blood ; 123(11): 1739-46, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24408325

RESUMO

The plasma zymogens factor XII (fXII) and factor XI (fXI) contribute to thrombosis in a variety of mouse models. These proteins serve a limited role in hemostasis, suggesting that antithrombotic therapies targeting them may be associated with low bleeding risks. Although there is substantial epidemiologic evidence supporting a role for fXI in human thrombosis, the situation is not as clear for fXII. We generated monoclonal antibodies (9A2 and 15H8) against the human fXII heavy chain that interfere with fXII conversion to the protease factor XIIa (fXIIa). The anti-fXII antibodies were tested in models in which anti-fXI antibodies are known to have antithrombotic effects. Both anti-fXII antibodies reduced fibrin formation in human blood perfused through collagen-coated tubes. fXII-deficient mice are resistant to ferric chloride-induced arterial thrombosis, and this resistance can be reversed by infusion of human fXII. 9A2 partially blocks, and 15H8 completely blocks, the prothrombotic effect of fXII in this model. 15H8 prolonged the activated partial thromboplastin time of baboon and human plasmas. 15H8 reduced fibrin formation in collagen-coated vascular grafts inserted into arteriovenous shunts in baboons, and reduced fibrin and platelet accumulation downstream of the graft. These findings support a role for fXII in thrombus formation in primates.


Assuntos
Modelos Animais de Doenças , Deficiência do Fator XII/complicações , Fator XII/antagonistas & inibidores , Fator XII/fisiologia , Trombina/metabolismo , Trombose/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Coagulação Sanguínea , Fator XI/metabolismo , Fator XIIa/metabolismo , Fibrina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papio , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Tromboplastina/metabolismo , Trombose/etiologia , Trombose/metabolismo
18.
Blood ; 119(12): 2914-21, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22167755

RESUMO

The endothelial protein C receptor (EPCR) plays an important role in cardiovascular disease by binding protein C/activated protein C (APC). EPCR structure contains a hydrophobic groove filled with an unknown phospholipid needed to perform its function. It has not been established whether lipid exchange takes place in EPCR as a regulatory mechanism of its activity. Our objective was to identify this phospholipid and to explore the possibility of lipid exchange as a regulatory mechanism of EPCR activity driven by the endothelially expressed secretory group V phospholipase A(2) (sPLA(2)-V). We identified phosphatidylcholine (PCh) as the major phospholipid bound to human soluble EPCR (sEPCR). PCh in EPCR could be exchanged for lysophosphatidylcholine (lysoPCh) and platelet activating factor (PAF). Remarkably, lysoPCh and PAF impaired the protein C binding ability of sEPCR. Inhibition of sPLA(2)-V, responsible for lysoPCh and PAF generation, improved APC binding to endothelial cells. EPCR-dependent protein C activation and APC antiapoptotic effect were thus significantly enhanced. In contrast, endothelial cell supplementation with sPLA(2)-V inhibited both APC generation and its antiapoptotic effects. We conclude that APC generation and function can be modulated by changes in phospholipid occupancy of its endothelial cell receptor.


Assuntos
Antígenos CD/química , Antígenos CD/metabolismo , Fosfolipases A2 do Grupo V/metabolismo , Lisofosfatidilcolinas/química , Fator de Ativação de Plaquetas/química , Proteína C/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Animais , Cromatografia em Camada Fina , Células Endoteliais/metabolismo , Receptor de Proteína C Endotelial , Ativação Enzimática/fisiologia , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Lisofosfatidilcolinas/metabolismo , Espectrometria de Massas , Camundongos , Fator de Ativação de Plaquetas/metabolismo , Estrutura Terciária de Proteína , Espectrometria de Fluorescência
19.
J Thromb Haemost ; 22(5): 1433-1446, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331196

RESUMO

BACKGROUND: Cardiovascular implantable devices, such as vascular stents, are critical for the treatment of cardiovascular diseases. However, their success is dependent on robust and often long-term antithrombotic therapies. Yet, the current standard-of-care therapies often pose significant bleeding risks to patients. Coagulation factor (F)XI and FXII have emerged as potentially safe and efficacious targets to safely reduce pathologic thrombin generation in medical devices. OBJECTIVES: To study the efficacy of monoclonal antibody-targeting FXII and FXI of the contact pathway in preventing vascular device-related thrombosis. METHODS: The effects of inhibition of FXII and FXI using function-blocking monoclonal antibodies were examined in a nonhuman primate model of nitinol stent-related thrombosis under arterial and venous flow conditions. RESULTS: We found that function-blocking antibodies of FXII and FXI reduced markers of stent-induced thrombosis in vitro and ex vivo. However, FXI inhibition resulted in more effective mitigation of thrombosis markers under varied flow conditions. CONCLUSION: This work provides further support for the translation of contact pathway of coagulation inhibitors for their adjunctive clinical use with cardiovascular devices.


Assuntos
Ligas , Anticorpos Monoclonais , Fator XII , Fator XI , Stents , Trombose , Animais , Trombose/prevenção & controle , Trombose/sangue , Fator XII/metabolismo , Fator XII/antagonistas & inibidores , Fator XII/imunologia , Fator XI/antagonistas & inibidores , Fator XI/imunologia , Fator XI/metabolismo , Anticorpos Monoclonais/farmacologia , Humanos , Coagulação Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Fluxo Sanguíneo Regional , Fibrinolíticos/farmacologia
20.
Res Pract Thromb Haemost ; 8(1): 102276, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226339

RESUMO

Background: Hyperlipidemia is associated with chronic inflammation and thromboinflammation. This is an underlying cause of several cardiovascular diseases, including atherosclerosis. In diseased blood vessels, rampant thrombin generation results in the initiation of the coagulation cascade, activation of platelets, and endothelial cell dysfunction. Coagulation factor (F) XI represents a promising therapeutic target to reduce thromboinflammation, as it is uniquely positioned at an intersection between inflammation and thrombin generation. Objectives: This study aimed to investigate the role of FXI in promoting platelet and endothelial cell activation in a model of hyperlipidemia. Methods: Nonhuman primates (NHPs) were fed a standard chow diet (lean, n = 6) or a high-fat diet (obese, n = 8) to establish a model of hyperlipidemia. Obese NHPs were intravenously administered a FXI blocking antibody (2 mg/kg) and studied at baseline and at 1, 7, 14, 21, and 28 days after drug administration. Platelet activation and inflammatory markers were measured using fluorescence-activated cell sorting or enzyme-linked immunosorbent assay. Molecular imaging was used to quantify vascular cell adhesion molecule 1 (VCAM-1) expression at the carotid bifurcation. Results: Obese NHPs demonstrated increased sensitivity for platelet P-selectin expression and phosphatidylserine exposure in response to platelet GPVI or PAR agonists compared with lean NHPs. Obese NHPs exhibited elevated levels of C-reactive protein, cathepsin D, and myeloperoxidase compared with lean NHPs. Following pharmacological inhibition of FIX activation by FXIa, platelet priming for activation by GPVI or PAR agonists, C-reactive protein levels, and endothelial VCAM-1 levels were reduced in obese NHPs. Conclusion: FXI activation promotes the proinflammatory phenotype of hyperlipidemia by priming platelet activation and inciting endothelial cell dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA