Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235187

RESUMO

Ionic liquids (ILs) have emerged as active pharmaceutical ingredients because of their excellent antibacterial and biological activities. Herein, we used the green-chemistry-synthesis procedure, also known as the metathesis method, to develop three series of ionic liquids using 1-methyl-3-butyl imidazolium, butyl pyridinium, and diethyldibutylammonium as cations, and bromide (Br-), methanesulfonate (CH3SO3-), bis(trifluoromethanesulfonyl)imide (NTf2-), dichloroacetate (CHCl2CO2-), tetrafluoroborate (BF4-), and hydrogen sulfate (HSO4-) as anions. Spectroscopic methods were used to validate the structures of the lab-synthesized ILs. We performed an agar well diffusion assay by using pathogenic bacteria that cause various infections (Escherichia coli; Enterobacter aerogenes; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Streptococcus pneumoniae; Streptococcus pyogenes) to scrutinize the in vitro antibacterial activity of the ILs. It was established that the nature and unique combination of the cations and anions were responsible for the antibacterial activity of the ILs. Among the tested ionic liquids, the imidazolium cation and NTf2- and HSO4- anions exhibited the highest antibacterial activity. The antibacterial potential was further investigated by in silico studies, and it was observed that bis(trifluoromethanesulfonyl)imide (NTf2-) containing imidazolium and pyridinium ionic liquids showed the maximum inhibition against the targeted bacterial strains and could be utilized in antibiotics. These antibacterial activities float the ILs as a promising alternative to the existing antibiotics and antiseptics.


Assuntos
Compostos de Amônio , Anti-Infecciosos Locais , Líquidos Iônicos , Ágar , Ânions/química , Antibacterianos/farmacologia , Brometos/química , Dióxido de Carbono , Cátions/química , Escherichia coli , Hidrocarbonetos Fluorados , Hidrogênio , Imidazóis/química , Imidazóis/farmacologia , Imidas , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Mesilatos , Preparações Farmacêuticas , Sulfatos
2.
Heliyon ; 8(5): e09533, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663730

RESUMO

Antibacterial activity is an essential property of ionic liquids. In this work, a comprehensive study has been performed on the antibacterial activity of ionic liquids to be utilized for further research and applications. Eighteen ionic liquids viz. Octyl Imidazolium, octyl Pyridinium, quaternary phosphonium-based cations containing bromide, sodium methane sulphonates, bis(trifluoromethane sulfonyl) imide, dichloroacetate, tetrafluoroborate, hydrogen sulfate were prepared and characterized with the help of different spectroscopic techniques. All these samples of ionic liquids were tested for their antibacterial activity against the most commonly occurring bacteria in the environment, i.e., Enterobacter aerogenes (E. aerogenes), Proteus vulgaris (P. vulgaris), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Streptococcus pyogenes (S. pyogenes). Most of the ionic liquids show good antibacterial properties, and imidazolium-based ionic liquids were even more antibacterial as compared to positive control. It was observed that a unique combination of cation and anion is essential to achieve desired antibacterial properties. The mechanism of antibacterial activity was further investigated using density functional theory calculations. A good correlation was found between experimental and theoretical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA