Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(9): 6359-6411, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36459432

RESUMO

The direct transformation of methane to methanol remains a significant challenge for operation at a larger scale. Central to this challenge is the low reactivity of methane at conditions that can facilitate product recovery. This review discusses the issue through examination of several promising routes to methanol and an evaluation of performance targets that are required to develop the process at scale. We explore the methods currently used, the emergence of active heterogeneous catalysts and their design and reaction mechanisms and provide a critical perspective on future operation. Initial experiments are discussed where identification of gas phase radical chemistry limited further development by this approach. Subsequently, a new class of catalytic materials based on natural systems such as iron or copper containing zeolites were explored at milder conditions. The key issues of these technologies are low methane conversion and often significant overoxidation of products. Despite this, interest remains high in this reaction and the wider appeal of an effective route to key products from C-H activation, particularly with the need to transition to net carbon zero with new routes from renewable methane sources is exciting.

2.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3848-3854, 2023 Jul.
Artigo em Zh | MEDLINE | ID: mdl-37475076

RESUMO

This study aims to investigate the neuroprotective effect of tetramethylpyrazine on mice after spinal cord injury and its mechanism. Seventy-five female C57BL/6 mice were randomly divided into 5 groups, namely, a sham operation group, a model group, a tetramethylpyrazine low-dose group(25 mg·kg~(-1)), a tetramethylpyrazine medium-dose group(50 mg·kg~(-1)), and a tetramethylpyrazine high-dose group(100 mg·kg~(-1)), with 15 mice in each group. Modified Rivlin method was used to establish the mouse model of acute spinal cord injury. After 14 d of tetramethylpyrazine intervention, the motor function of hind limbs of mice was evaluated by basso mouse scale(BMS) and inclined plate test. The levels of inflammatory cytokines tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1ß(IL-1ß) in the spinal cord homogenate were determined by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe the histology of the spinal cord, and Nissl's staining was used to observe the changes in the number of neurons. Western blot and immunofluorescence method were used to detect the expression of glial fibrillary acidic protein(GFAP) and C3 protein. Tetramethylpyrazine significantly improved the motor function of the hind limbs of mice after spinal cord injury, and the BMS score and inclined plate test score of the tetramethylpyrazine high-dose group were significantly higher than those of the model group(P<0.01). The levels of TNF-α, IL-6, and IL-1ß in spinal cord homogenate of the tetramethylpyrazine high-dose group were significantly decreased(P<0.01). After tetramethylpyrazine treatment, the spinal cord morphology recovered, the number of Nissl bodies increased obviously with regular shape, and the loss of neurons decreased. As compared with the model group, the expression of GFAP and C3 protein was significantly decreased(P<0.05,P<0.01) in tetramethylpyrazine high-dose group. In conclusion, tetramethylpyrazine can promote the improvement of motor function and play a neuroprotective role in mice after spinal cord injury, and its mechanism may be related to inhibiting inflammatory response and improving the hyperplasia of glial scar.


Assuntos
Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Ratos , Camundongos , Feminino , Animais , Ratos Sprague-Dawley , Fármacos Neuroprotetores/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/genética , Medula Espinal/metabolismo
3.
Angew Chem Int Ed Engl ; 62(31): e202306133, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261941

RESUMO

Methane dehydroaromatization (MDA) over Mo-modified zeolite is a potential catalytic route for converting natural gas into valuable aromatics. However, the active species in this reaction are highly complex, involving diverse Mo species, acidic sites of zeolite, and organic molecules. Herein, we apply 1D 95 Mo NMR and 2D 1 H-95 Mo heteronuclear correlation solid-state NMR spectroscopy to directly observe the active ensembles in the confined channels of Mo/ZSM-5 zeolite during the MDA reaction. We monitor the evolution of the spatial correlations of Mo species with the Brønsted acid sites and organic products (olefins and aromatics) in the zeolite channels. We identified two kinds of MoOx Cy species, with the more carbidic one (MoOx Cy -II) exhibiting higher activity for methane activation and benzene formation. The strong spatial interactions between the active Mo species and the organic species in the Mo/ZSM-5 pores are related to the MDA activity.

4.
Chem Soc Rev ; 50(15): 8382-8399, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34115080

RESUMO

Understanding the nature of heterogeneous catalysts is critical for the rational design of highly active catalysts, which necessitates in-depth characterization of the structure and properties of catalysts as well as reaction mechanisms. Solid-state NMR correlation spectroscopy is becoming increasingly recognized as a powerful tool in the study of catalysts and catalytic reactions because of its capability to provide atomic-level insights into the structure, interaction and dynamics of molecules by establishing connectivity and proximity between the same or distinct nuclei. This tutorial review focuses on the fundamentals and state-of-the-art applications of solid-state NMR correlation techniques to structural characterization of catalytic materials including zeolites, metal oxides, organometallic complexes and MOFs as well as relevant studies regarding synthesis, synergistic catalysis, host-guest interactions and reaction mechanisms. Various correlation NMR methods that have been employed to address the challenging issues in heterogeneous catalysis are highlighted. This review concludes with outlooks on the promising applications and potential developments of solid-state NMR correlation spectroscopy in catalytic materials.

5.
Magn Reson Chem ; 59(9-10): 1062-1076, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33847409

RESUMO

Through-space heteronuclear correlation (D-HETCOR) experiments based on heteronuclear multiple-quantum correlation (D-HMQC) and refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) sequences have been proven to be useful approaches for the detection of the spatial proximity between half-integer quadrupolar nuclei in solids under magic-angle spinning (MAS) conditions. The corresponding pulse sequences employ coherence transfers mediated by heteronuclear dipolar interactions, which are reintroduced under MAS by radiofrequency irradiation of only one of the two correlated nuclei. We investigate herein using numerical simulations of spin dynamics and solid-state NMR experiments on magnesium aluminoborate glass how the choice of the channel to which the heteronuclear dipolar recoupling is applied affects the transfer efficiency of D-HMQC and D-RINEPT sequences between 11 B and 27 Al nuclei. Experimental results show that maximum transfer efficiency is achieved when the recoupling scheme is applied to the channel, for which the spin magnetization is parallel to the B0 axis in average.

6.
Angew Chem Int Ed Engl ; 60(44): 23630-23634, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34490714

RESUMO

Propane aromatization on metal-modified zeolites provides a promising route to produce valuable chemicals such as benzene, toluene and xylene via non-petroleum feedstocks. The mechanistic understanding of propane conversion to aromatics is still challenging due to the complexity of the aromatization process. Herein, by using solid-state NMR spectroscopy and GC-MS, it is shown that cyclopentenyl cations are formed as active intermediates during propane aromatization on Ga/ZSM-5 zeolite. Autocatalysis of propane to aromatics is identified in the induction period. The cyclopentenyl cations serve as key hydrocarbon pool species to co-catalyze propane conversion and promote aromatics formation, revealing a dominant hydrocarbon pool process in propane aromatization.

7.
Angew Chem Int Ed Engl ; 60(51): 26847-26854, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34636120

RESUMO

Carbocations such as cyclic carbenium ions are important intermediates in the zeolite-catalyzed methanol-to-olefins (MTO) reaction. The MTO reaction propagates through a complex hydrocarbon pool process. Understanding the carbocation-involved hydrocarbon pool reaction on a molecular level still remains challenging. Here we show that electron-deficient cyclopentenyl cations stabilized in ZSM-5 zeolite are able to capture the alkanes, methanol, and olefins produced during MTO reaction via noncovalent interactions. Intermolecular spatial proximities/interactions are identified by using two-dimensional 13 C-13 C correlation solid-state NMR spectroscopy. Combined NMR experiments and theoretical analysis suggests that in addition to the dispersion and CH/π interactions, the multiple functional groups in the cyclopentenyl cations produce strong attractive force via cation-induced dipole, cation-dipole and cation-π interactions. These carbocation-induced noncovalent interactions modulate the product selectivity of hydrocarbon pool reaction.

8.
Angew Chem Int Ed Engl ; 60(19): 10709-10715, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33751737

RESUMO

Methane dehydroaromatization (MDA) on Mo/ZSM-5 zeolite catalyst is promising for direct transformation of natural gas. Understanding the nature of active sites on Mo/ZSM-5 is a challenge for applications. Herein, using 1 H{95 Mo} double-resonance solid-state NMR spectroscopy, we identify proximate dual active sites on Mo/ZSM-5 catalyst by direct observation of internuclear spatial interaction between Brønsted acid site and Mo species in zeolite channels. The acidic proton-Mo spatial interaction is correlated with methane conversion and aromatics formation in the MDA process, an important factor in determining the catalyst activity and lifetime. The evolution of olefins and aromatics in Mo/ZSM-5 channels is monitored by detecting their host-guest interactions with both active Mo sites and Brønsted acid sites via 1 H{95 Mo} double-resonance and two-dimensional 1 H-1 H correlation NMR spectroscopy, revealing the intermediate role of olefins in hydrocarbon pool process during the MDA reaction.

9.
Angew Chem Int Ed Engl ; 60(28): 15556-15562, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33942452

RESUMO

Hybrid nanomaterials with controlled dimensions, intriguing components and ordered structures have attracted significant attention in nanoscience and technology. Herein, we report a facile and green polyoxometallate (POM)-assisted hydrothermal carbonization strategy for synthesis of carbonaceous hybrid nanomaterials with molecularly dispersed POMs and ordered mesopores. By using various polyoxometallates such as ammonium phosphomolybdate, silicotungstic acid, and phosphotungstic acid, our approach can be generalized to synthesize ordered mesoporous hybrid nanostructures with diverse compositions and morphologies (nanosheet-assembled hierarchical architectures, nanospheres, and nanorods). Moreover, the ordered mesoporous nanosheet-assembled hierarchical hybrids with molecularly dispersed POMs exhibit remarkable catalytic activity toward the dehydration of tert-butanol with the high isobutene selectivity (100 %) and long-term catalytic durability (80 h).

10.
J Am Chem Soc ; 142(41): 17403-17412, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32948092

RESUMO

Optimizing kinetic barriers of ammonia synthesis to reduce the energy intensity has recently attracted significant research interest. The motivation for the research is to discover means by which activation barriers of N2 dissociation and NHz (z = 1-2, surface intermediates) destabilization can be reduced simultaneously, that is, breaking the "scaling relationship". However, by far only a single success has been reported in 2016 based on the discovery of a strong-weak N-bonding pair: transition metals (nitrides)-LiH. Described herein is a second example that is counterintuitively founded upon a strong-strong N-bonding pair unveiled in a bifunctional nanoscale catalyst TiO2-xHy/Fe (where 0.02 ≤ x ≤ 0.03 and 0 < y < 0.03), in which hydrogen spillover (H) from Fe to cascade oxygen vacancies (OV-OV) results in the trapped form of OV-H on the TiO2-xHy component. The Fe component thus enables facile activation of N2, while the OV-H in TiO2-xHy hydrogenates the N or NHz to NH3 easily.

11.
Angew Chem Int Ed Engl ; 59(44): 19532-19538, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32449837

RESUMO

Lewis acid zeolites have found increasing application in the field of biomass conversion, in which the selective transformation of carbonyl-containing molecules is of particular importance due to their relevance in organic synthesis. Mechanistic insight into the activation of carbonyl groups on Lewis acid sites is challenging and critical for the understanding of the catalytic process, which requires the identification of reaction intermediates. Here we report the observation of a stable surface gem-diol-type species in the activation of acetone on Sn-ß zeolite. 13 C, 119 Sn, and 13 C-119 Sn double-resonance NMR spectroscopic studies demonstrate that only the open Sn site ((SiO)3 Sn-OH) on Sn-ß is responsible for the formation of the surface species. 13 C MAS NMR experiments together with density functional theory calculations suggest that the gem-diol-type species exhibits high reactivity and can serve as an active intermediate in the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reaction of acetone with cyclohexanol. The gem-diol-type species offers an energy-preferable pathway for the direct carbon-to-carbon hydrogen transfer between ketone and alcohol. The results provide new insights into the transformation of carbonyl-containing molecules catalyzed by Lewis acid zeolites.

12.
Angew Chem Int Ed Engl ; 59(18): 7198-7202, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32061116

RESUMO

The understanding of catalyst deactivation represents one of the major challenges for the methanol-to-hydrocarbon (MTH) reaction over acidic zeolites. Here we report the critical role of intermolecular π-interactions in catalyst deactivation in the MTH reaction on zeolites H-SSZ-13 and H-ZSM-5. π-interaction-induced spatial proximities between cyclopentenyl cations and aromatics in the confined channels and/or cages of zeolites are revealed by two-dimensional solid-state NMR spectroscopy. The formation of naphtalene as a precursor to coke species is favored due to the reaction of aromatics with the nearby cyclopentenyl cations and correlates with both acid density and zeolite topology.

13.
Phys Chem Chem Phys ; 20(25): 17218-17225, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29900471

RESUMO

γ-Al2O3 is an important catalyst and catalyst support of industrial interest. Its acid/base characteristics are correlated to the surface structure, which has always been an issue of concern. In this work, the complex (sub-)surface oxygen species on surface-selectively labelled γ-Al2O3 were probed by 17O dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP-SENS). Direct 17O MAS and indirect 1H-17O cross-polarization (CP)/MAS DNP experiments enable observation of the (sub-)surface bare oxygen species and hydroxyl groups. In particular, a two-dimensional (2D) 17O 3QMAS DNP spectrum was for the first time achieved for γ-Al2O3, in which two O(Al)4 and one O(Al)3 bare oxygen species were identified. The 17O isotropic chemical shifts (δcs) vary from 56.7 to 81.0 ppm and the quadrupolar coupling constants (CQ) range from 0.6 to 2.5 MHz for the three oxygen species. The coordinatively unsaturated O(Al)3 species is characterized by a higher field chemical shift (56.7 ppm) and the largest CQ value (2.5 MHz) among these oxygen sites. 2D 1H → 17O HETCOR DNP experiments allow us to discriminate three bridging (Aln)-µ2-OH and two terminal (Aln)-µ1-OH hydroxyl groups. The structural features of the bare oxygen species and hydroxyl groups are similar for the γ-Al2O3 samples isotopically labelled by 17O2 gas or H217O. The results presented here show that the combination of surface-selective labelling and DNP-SENS is an effective approach for characterizing oxides with complex surface species.

14.
Sensors (Basel) ; 18(1)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351223

RESUMO

Recently, with the development of artificial intelligence technologies and the popularity of mobile devices, walking detection and step counting have gained much attention since they play an important role in the fields of equipment positioning, saving energy, behavior recognition, etc. In this paper, a novel algorithm is proposed to simultaneously detect walking motion and count steps through unconstrained smartphones in the sense that the smartphone placement is not only arbitrary but also alterable. On account of the periodicity of the walking motion and sensitivity of gyroscopes, the proposed algorithm extracts the frequency domain features from three-dimensional (3D) angular velocities of a smartphone through FFT (fast Fourier transform) and identifies whether its holder is walking or not irrespective of its placement. Furthermore, the corresponding step frequency is recursively updated to evaluate the step count in real time. Extensive experiments are conducted by involving eight subjects and different walking scenarios in a realistic environment. It is shown that the proposed method achieves the precision of 93.76 % and recall of 93.65 % for walking detection, and its overall performance is significantly better than other well-known methods. Moreover, the accuracy of step counting by the proposed method is 95.74 % , and is better than both of the several well-known counterparts and commercial products.


Assuntos
Caminhada , Algoritmos , Atenção , Análise de Fourier , Humanos , Smartphone
15.
Angew Chem Int Ed Engl ; 57(32): 10197-10201, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29953710

RESUMO

Surface methoxy species bound to an extra-framework Al (SMS-EFAL) was unambiguously identified by advanced 13 C-{27 Al} double-resonance solid-state NMR technique in the methanol-to-olefins reaction on H-ZSM-5 zeolite. The high reactivity of the SMS-EFAL leads to the formation of surface ethoxy species and ethanol as the key intermediates for ethene generation in the early reaction stage. A direct route for the initial C-C bond formation in ethene was proposed and corroborated by density functional theory calculations.

16.
J Am Chem Soc ; 139(29): 10020-10028, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28683549

RESUMO

The detailed structure-activity relationship of surface hydroxyl groups (Ti-OH) and adsorbed water (H2O) on the TiO2 surface should be the key to clarifying the photogenerated hole (h+) transfer mechanism for photocatalytic water splitting, which however is still not well understood. Herein, one- and two-dimensional 1H solid-state NMR techniques were employed to identify surface hydroxyl groups and adsorbed water molecules as well as their spatial proximity/interaction in TiO2 photocatalysts. It was found that although the two different types of Ti-OH (bridging hydroxyl (OHB) and terminal hydroxyl (OHT) groups were present on the TiO2 surface, only the former is in close spatial proximity to adsorbed H2O, forming hydrated OHB. In situ 1H and 13C NMR studies of the photocatalytic reaction on TiO2 with different Ti-OH groups and different H2O loadings illustrated that the enhanced activity was closely correlated to the amount of hydrated OHB groups. To gain insight into the role of hydrated OHB groups in the h+ transfer process, in situ ESR experiments were performed on TiO2 with variable H2O loading, which revealed that the hydrated OHB groups offer a channel for the transfer of photogenerated holes in the photocatalytic reaction, and the adsorbed H2O could have a synergistic effect with the neighboring OHB group to facilitate the formation and evolution of active paramagnetic intermediates. On the basis of experimental observations, the detailed photocatalytic mechanism of water splitting on the surface of TiO2 was proposed.

17.
Phys Chem Chem Phys ; 19(14): 9349-9353, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28138682

RESUMO

We demonstrated the facet dependence of pairwise addition of hydrogen in heterogeneous catalysis over Pd nanocrystal catalysts via NMR using para-hydrogen-induced polarization.

18.
Solid State Nucl Magn Reson ; 80: 1-6, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27770652

RESUMO

The carbonylation of methanol with carbon monoxide to generate methyl acetate over Cu-H-MOR and H-MOR zeolites is studied using solid-state NMR spectroscopy. It is found that the catalytic activity of Cu-H-MOR zeolite is much higher than that of H-MOR zeolite. The presence of Cu+ species enables the stabilization of dimethyl ether, which efficiently suppresses the hydrocarbon formation during carbonylation process over Cu-H-MOR zeolite. In addition, the carbon monoxide adsorbed on Cu+ site is not an active species to produce either methyl acetate or acetic acid.

19.
Angew Chem Int Ed Engl ; 55(51): 15826-15830, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27860033

RESUMO

Understanding the nature of active sites in metal-supported catalysts is of great importance towards establishing their structure-property relationships. The outstanding catalytic performance of metal-supported catalysts is frequently ascribed to the synergic effect of different active sites, which is however not well spectroscopically characterized. Herein, we report the direct detection of surface Zn species and 1 H-67 Zn internuclear interaction between Zn2+ ions and Brønsted acid sites on Zn-modified ZSM-5 zeolites by high-field solid-state NMR spectroscopy. The observed promotion of C-H bond activation of methane is rationalized by the enhanced Brønsted acidity generated by synergic effects arising from the spatial proximity/interaction between Zn2+ ions and Brønsted acidic protons. The concentration of synergic active sites is determined by 1 H-67 Zn double-resonance solid-state NMR spectroscopy.

20.
Angew Chem Int Ed Engl ; 55(7): 2507-11, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26732748

RESUMO

Hydrocarbon-pool chemistry is important in methanol to olefins (MTO) conversion on acidic zeolite catalysts. The hydrocarbon-pool (HP) species, such as methylbenzenes and cyclic carbocations, confined in zeolite channels during the reaction are essential in determining the reaction pathway. Herein, we experimentally demonstrate the formation of supramolecular reaction centers composed of organic hydrocarbon species and the inorganic zeolite framework in H-ZSM-5 zeolite by advanced (13)C-(27)Al double-resonance solid-state NMR spectroscopy. Methylbenzenes and cyclic carbocations located near Brønsted acid/base sites form the supramolecular reaction centers in the zeolite channel. The internuclear spatial interaction/proximity between the (13)C nuclei (associated with HP species) and the (27) Al nuclei (associated with Brønsted acid/base sites) determines the reactivity of the HP species. The closer the HP species are to the zeolite framework Al, the higher their reactivity in the MTO reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA