Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(14): 16245-16257, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352897

RESUMO

Increasing working voltage is a promising way to increase the energy density of lithium-ion batteries. Cycling and rate performance deteriorated due to excessive electrolyte decomposition and uncontrolled formation of a cathode-electrolyte interface (CEI) layer at a high voltage. A new concept is proposed to construct a high-voltage-stable electrode-electrolyte interface. An elastomeric poly(dimethyl siloxane) (PDMS) binder is incorporated into the electrode to modify the LiNi0.5Co0.2Mn0.3O2 (NCM 523) particle surface via an in situ cross-linking reaction between hydroxy-terminated PDMS and methyl trimethoxy silane promoted by moisture at ambient conditions (MPDMS). Improved electrochemical performance is achieved with the MPDMS binder in terms of reversible capacity (201 vs 185 mAh·g-1 at 0.2C), capacity retention (80 vs 68%, after 300 cycles at 1C), and rate performance (55.6% increase at 5C), as demonstrated by the NCM 523||Li half-cell. The NCM 523||graphite full-cell also shows improved performance at 4.6 V (147 vs 128 mAh·g-1, 82 vs 76%, after 200 cycles at 1C). The mechanism studies indicate that MPDMS exerts multiple effects, including cathode surface passivation, solvation structure tuning, electrolyte uptake enhancement, and mechanical stress relief. This work provides an inspiring route to realize high-voltage application of lithium-ion battery technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA