Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Chem Res Toxicol ; 37(5): 804-813, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38646980

RESUMO

With the increasing use of oral contraceptives and estrogen replacement therapy, the incidence of estrogen-induced cholestasis (EC) has tended to rise. Psoralen (P) and isopsoralen (IP) are the major bioactive components in Psoraleae Fructus, and their estrogen-like activities have already been recognized. Recent studies have also reported that ERK1/2 plays a critical role in EC in mice. This study aimed to investigate whether P and IP induce EC and reveal specific mechanisms. It was found that P and IP increased the expression of esr1, cyp19a1b and the levels of E2 and VTG at 80 µM in zebrafish larvae. Exemestane (Exe), an aromatase antagonist, blocked estrogen-like activities of P and IP. At the same time, P and IP induced cholestatic hepatotoxicity in zebrafish larvae with increasing liver fluorescence areas and bile flow inhibition rates. Further mechanistic analysis revealed that P and IP significantly decreased the expression of bile acids (BAs) synthesis genes cyp7a1 and cyp8b1, BAs transport genes abcb11b and slc10a1, and BAs receptor genes nr1h4 and nr0b2a. In addition, P and IP caused EC by increasing the level of phosphorylation of ERK1/2. The ERK1/2 antagonists GDC0994 and Exe both showed significant rescue effects in terms of cholestatic liver injury. In conclusion, we comprehensively studied the specific mechanisms of P- and IP-induced EC and speculated that ERK1/2 may represent an important therapeutic target for EC induced by phytoestrogens.


Assuntos
Colestase , Ficusina , Furocumarinas , Psoralea , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Colestase/induzido quimicamente , Colestase/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Ficusina/farmacologia , Furocumarinas/farmacologia , Furocumarinas/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Psoralea/química , Peixe-Zebra
2.
Cell Biol Toxicol ; 39(2): 391-413, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35445903

RESUMO

The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which had a closely relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) played an important role not only in regulating fibrosis process, but also in maintaining mitochondrial function of pancreatic ß cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG upregulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose cultured HK-2 cells and 8-week-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF .


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Fibrose , Glucose/farmacologia , Glucose/metabolismo , Transição Epitelial-Mesenquimal , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia
3.
Cell Biol Toxicol ; 39(6): 2787-2792, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37115478

RESUMO

The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which has a close relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) plays an important role not only in regulating the fibrosis process but also in maintaining the mitochondrial function of pancreatic ß-cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG up-regulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose-cultured HK-2 cells and 8-weeks-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF.

4.
Exp Cell Res ; 394(1): 112145, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561286

RESUMO

As two most common progressive diseases of aging, type 2 diabetes mellitus (T2DM) and benign prostatic hyperplasia (BPH) were all characterized by endocrine and metabolic disorders. Here, our clinical study showed that there were significant differences in fasting blood glucose (FBG), fasting insulin (FINS), insulin resistance index (HOMA-IR) and prostate volume (PV) between simple BPH patients and BPH complicated with T2DM patients. Further analysis showed that HOMA-IR was positively correlated with PV in BPH complicated with T2DM patients. The in vitro experiment results showed that high glucose (HG) promoted EMT process in a glucose-dependent manner in human prostate hyperplasia cells (BPH-1) and prostate cancer cells (PC-3), and this pathological process was exacerbated by co-culture with insulin. Mechanistically, insulin-induced exacerbation of EMT was depended on the activation of MEK/ERK signaling pathway, and we suggested that insulin and its analogs should be used very carefully for the clinical antihyperglycemic treatment of BPH complicated with T2DM patients.


Assuntos
Glucose/metabolismo , Glucose/farmacologia , Insulina/farmacologia , Hiperplasia Prostática/tratamento farmacológico , Neoplasias da Próstata/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Resistência à Insulina/fisiologia , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno , Próstata/efeitos dos fármacos , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Pharm Anal ; 14(1): 52-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352949

RESUMO

The occurrence of benign prostate hyperplasia (BPH) was related to disrupted sex steroid hormones, and metformin (Met) had a clinical response to sex steroid hormone-related gynaecological disease. However, whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear. Here, our clinical study showed that along with prostatic epithelial cell (PEC) proliferation, sex steroid hormones were dysregulated in the serum and prostate of BPH patients. As the major contributor to dysregulated sex steroid hormones, elevated dihydrotestosterone (DHT) had a significant positive relationship with the clinical characteristics of BPH patients. Activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor (AR)-mediated Yes-associated protein (YAP1)-TEA domain transcription factor (TEAD4) heterodimers. Met's anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells. Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.

7.
Chem Biol Interact ; 400: 111157, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059604

RESUMO

Non-alcoholic fatty liver disease (NAFLD) was a chronic complication of type 2 diabetes mellitus (T2DM), and this comorbid disease lacked therapeutic drugs. Semen Ziziphi Spinosae (SZS) was the seed of Ziziphus jujuba var. Spinosa (Bunge) Hu ex H.F. Chow, and it could alleviate the symptoms of T2DM patients. As a triterpene saponin, Jujuboside A (Ju A) was the main active substance isolated from SZS and could improve hyperglycemia of diabetic mice. However, it was still unknown whether Ju A has protective effects on T2DM-associated NAFLD. Our study showed that Ju A attenuated T2DM-associated liver damage by alleviating hepatic lipid accumulation, inflammatory response, and oxidative stress in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-stimulated human hepatocellular carcinomas (HepG2) cells. Along with the improved hyperglycemia and liver injury, Ju A restrained Yin Yang 1 (YY1)/cytochrome P450 2E1 (CYP2E1) signaling in vivo and in vitro. YY1 overexpression intercepted the protective effects of Ju A on T2DM-induced liver injury via promoting hepatic lipid accumulation, inflammatory response, and oxidative stress. While, the blocking effect of YY1 overexpression on Ju A's hepatoprotective effect was counteracted by further treatment of CYP2E1 specific inhibitor diethyldithiocarbamate (DDC) in vitro. In-depth mechanism research showed that Ju A through YY1/CYP2E1 signaling promoted hepatic fatty acid ß-oxidation, and inhibited inflammatory response and oxidative stress by activating peroxisome proliferator-activated receptor alpha (PPARα), leading to the improvement of T2DM-associated NAFLD. Ju A might be a potential agent in the treatment and health care of T2DM-associated liver disease, especially NAFLD.


Assuntos
Citocromo P-450 CYP2E1 , Diabetes Mellitus Tipo 2 , Inflamação , Metabolismo dos Lipídeos , Fígado , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Transdução de Sinais , Fator de Transcrição YY1 , Estresse Oxidativo/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Masculino , Citocromo P-450 CYP2E1/metabolismo , Células Hep G2 , Metabolismo dos Lipídeos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Transcrição YY1/metabolismo , Camundongos Endogâmicos C57BL , Saponinas/farmacologia , Saponinas/uso terapêutico
8.
J Pharm Anal ; 14(9): 100962, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39350964

RESUMO

Benign prostatic hyperplasia (BPH) is one of the major chronic complications of type 2 diabetes mellitus (T2DM), and sex steroid hormones are common risk factors for the occurrence of T2DM and BPH. The profiles of sex steroid hormones are simultaneously quantified by LC-MS/MS in the clinical serum of patients, including simple BPH patients, newly diagnosed T2DM patients, T2DM complicated with BPH patients and matched healthy individuals. The G protein-coupled estrogen receptor (GPER) inhibitor G15, GPER knockdown lentivirus, the YAP1 inhibitor verteporfin, YAP1 knockdown/overexpression lentivirus, targeted metabolomics analysis, and Co-IP assays are used to investigate the molecular mechanisms of the disrupted sex steroid hormones homeostasis in the pathological process of T2DM complicated with BPH. The homeostasis of sex steroid hormone is disrupted in the serum of patients, accompanying with the proliferated prostatic epithelial cells (PECs). The sex steroid hormone metabolic profiles of T2DM patients complicated with BPH have the greatest degrees of separation from those of healthy individuals. Elevated 17ß-estradiol (E2) is the key contributor to the disrupted sex steroid hormone homeostasis, and is significantly positively related to the clinical characteristics of T2DM patients complicated with BPH. Activating GPER by E2 via Hippo-YAP1 signaling exacerbates high glucose (HG)-induced PECs proliferation through the formation of the YAP1-TEAD4 heterodimer. Knockdown or inhibition of GPER-mediated Hippo-YAP1 signaling suppresses PECs proliferation in HG and E2 co-treated BPH-1 cells. The anti-proliferative effects of verteporfin, an inhibitor of YAP1, are blocked by YAP1 overexpression in HG and E2 co-treated BPH-1 cells. Inactivating E2/GPER/Hippo/YAP1 signaling may be effective at delaying the progression of T2DM complicated with BPH by inhibiting PECs proliferation.

9.
Food Funct ; 15(5): 2628-2644, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38358014

RESUMO

As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo , Fibrose , Diabetes Mellitus/metabolismo
10.
Food Funct ; 15(5): 2772, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38358379

RESUMO

Removal of Expression of Concern for 'Sodium butyrate ameliorated diabetic nephropathy-associated tubulointerstitial inflammation by modulating tight junction of renal tubular epithelial cells' by Tingting Yang et al., Food Funct., 2022, Accepted Manuscript, https://doi.org/10.1039/D2FO00940D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA