Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Small ; : e2402114, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989698

RESUMO

Designing effective antifog coatings poses challenges in resisting physical and chemical damage, with persistent susceptibility to decomposition in aggressive environments. As their robustness is dictated by physicochemical structural features, precise control through unique fabrication strategies is crucial. To address this challenge, a novel method for crafting nanoscale antifog films with simultaneous directional growth and cross-linking is presented, utilizing solid-state continuous assembly of polymers via ring-opening metathesis polymerization (ssCAPROMP). A new amphiphilic copolymer (specified as macrocross-linker) is designed by incorporating polydimethylsiloxane, poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride (PMETAC), and polymerizable norbornene (NB) pendant groups, allowing ssCAPROMP to produce antifog films under ambient conditions. This novel approach results in distinctive surface and molecular characteristics. Adjusting water-absorption and nanoscale assembly parameters produced ultra-thin (≤100 nm) antifog films with enhanced durability, particularly against strong acidic and alkaline environments, surpassing commercial antifog glasses. Thickness loss analysis against external disturbances further validated the stable surface-tethered chemistries introduced through ssCAPROMP, even with the incorporation of minimal content of cross-linkable NB moieties (5 mol%). Additionally, a potential zwitter-wettability mechanism elucidates antifog observations. This work establishes a unique avenue for exploring nanoengineered antifog coatings through facile and robust surface chemistries.

2.
Chemistry ; 29(53): e202301767, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37401148

RESUMO

Machines can revolutionize the field of chemistry and material science, driving the development of new chemistries, increasing productivity, and facilitating reaction scale up. The incorporation of automated systems in the field of polymer chemistry has however proven challenging owing to the demanding reaction conditions, rendering the automation setup complex and costly. There is an imminent need for an automation platform which uses fast and simple polymerization protocols, while providing a high level of control on the structure of macromolecules via precision synthesis. This work combines an oxygen tolerant, room temperature polymerization method with a simple liquid handling robot to automatically prepare precise and high order multiblock copolymers with unprecedented livingness even after many chain extensions. The highest number of blocks synthesized in such a system is reported, demonstrating the capabilities of this automated platform for the rapid synthesis and complex polymer structure formation.

3.
Angew Chem Int Ed Engl ; 62(48): e202314729, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37814139

RESUMO

The synthesis of polymers with high molecular weights, controlled sequence, and tunable dispersities remains a challenge. A simple and effective visible-light controlled photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization is reported here to realize this goal. Key to this strategy is the use of switchable RAFT agents (SRAs) to tune polymerization activities coupled with the inherent highly living nature of photoiniferter RAFT polymerization. The polymerization activities of SRAs were in situ adjusted by the addition of acid. In addition to a switchable chain-transfer coefficient, photolysis and polymerization kinetic studies revealed that neutral and protonated SRAs showed different photolysis and polymerization rates, which is unique to photoiniferter RAFT polymerization in terms of dispersity control. This strategy features no catalyst, no exogenous radical source, temporal regulation by visible light, and tunable dispersities in the unprecedented high molecular weight regime (up to 500 kg mol-1 ). Pentablock copolymers with three different dispersity combinations were also synthesized, highlighting that the highly living nature was maintained even for blocks with large dispersities. Tg was lowered for high-dispersity polymers of similar MWs due to the existence of more low-MW polymers. This strategy holds great potential for the synthesis of advanced materials with controlled molecular weight, dispersity and sequence.

4.
Macromol Rapid Commun ; 43(10): e2100866, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35338794

RESUMO

Mechanical force as a type of stimuli for smart materials has obtained much attention in the past decade. Color-changing materials in response to mechanical stimuli have shown great potential in the applications such as sensors and displays. Mechanochromophore-linked polymeric materials, which are a growing sub-class of these materials, are discussed in detail in this review. Two main types of mechanochromophores which exhibit visible color change, summarized herein, involve either isomerization or radical generation mechanisms. This review focuses on their synthesis and incorporation into polymer matrices, the type of mechanical force used, factors affecting the mechanochromic properties, and their applications.


Assuntos
Polímeros , Materiais Inteligentes , Fenômenos Mecânicos
5.
Angew Chem Int Ed Engl ; 61(46): e202213396, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36151058

RESUMO

High-throughput synthesis of well-defined, ultrahigh molecular weight (UHMW) polymers by green approaches is highly desirable but remains unexplored. We report the creation of an atom-economic enzymatic cascade catalysis, consisting of formate oxidase (FOx) and horseradish peroxidase (HRP), that enables high-throughput reversible addition-fragmentation chain transfer (RAFT) synthesis of UHMW polymers at volumes down to 50 µL. FOx transforms formic acid, a C1 substrate, and oxygen to CO2 and H2 O2 , respectively. CO2 can escape from solution while H2 O2 is harnessed in situ by HRP to generate radicals from acetylacetone for RAFT polymerization, leaving no waste accumulation in solution. Oxygen-tolerant RAFT polymerization using enzymatic cascade redox cycles was successfully performed in vials and 96-well plates to produce libraries of well-defined UHMW polymers, and represents the first example of high-throughput synthesis method of such materials at extremely low volumes.


Assuntos
Dióxido de Carbono , Polímeros , Polímeros/química , Peso Molecular , Polimerização , Catálise , Peroxidase do Rábano Silvestre , Oxigênio
6.
Angew Chem Int Ed Engl ; 61(9): e202112842, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34861079

RESUMO

Polypeptide coatings are a cornerstone in the field of surface modification due to their widespread biological potential. As their properties are dictated by their structural features, subsequent control thereof using unique fabrication strategies is important. Herein, we report a facile method of precisely creating densely crosslinked polypeptide films with unusually high random coil content through continuous assembly polymerization via reversible addition-fragmentation chain transfer (CAP-RAFT). CAP-RAFT was fundamentally investigated using methacrylated poly-l-lysine (PLLMA) and methacrylated poly-l-glutamic acid (PLGMA). Careful technique refinement resulted in films up to 36.1±1.1 nm thick which could be increased to 94.9±8.2 nm after using this strategy multiple times. PLLMA and PLGMA films were found to have 30-50 % random coil conformations. Degradation by enzymes present during wound healing reveals potential for applications in drug delivery and tissue engineering.

7.
J Am Chem Soc ; 143(1): 286-293, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373526

RESUMO

Microbes employ a remarkably intricate electron transport system to extract energy from the environment. The respiratory cascade of bacteria culminates in the terminal transfer of electrons onto higher redox potential acceptors in the extracellular space. This general and inducible mechanism of electron efflux during normal bacterial proliferation leads to a characteristic fall in bulk redox potential (Eh), the degree of which is dependent on growth phase, the microbial taxa, and their physiology. Here, we show that the general reducing power of bacteria can be subverted to induce the abiotic production of a carbon-centered radical species for targeted bioorthogonal molecular synthesis. Using two species, Escherichia coli and Salmonella enterica serovar Typhimurium as model microbes, a common redox active aryldiazonium salt is employed to intervene in the terminal respiratory electron flow, affording radical production that is mediated by native redox-active molecular shuttles and active bacterial metabolism. The aryl radicals are harnessed to initiate and sustain a bioorthogonal controlled radical polymerization via reversible addition-fragmentation chain transfer (BacRAFT), yielding a synthetic extracellular matrix of "living" vinyl polymers with predetermined molecular weight and low dispersity. The ability to interface the ubiquitous reducing power of bacteria into synthetic materials design offers a new means for creating engineered living materials with promising adaptive and self-regenerative capabilities.


Assuntos
Transporte de Elétrons/fisiologia , Escherichia coli/metabolismo , Radicais Livres/metabolismo , Ácidos Polimetacrílicos/metabolismo , Salmonella typhimurium/metabolismo , Compostos Azo/química , Compostos Azo/metabolismo , Radicais Livres/química , Metacrilatos/química , Metacrilatos/metabolismo , Oxirredução , Polimerização
8.
Chem Soc Rev ; 49(14): 4737-4834, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32573586

RESUMO

Polypeptides have attracted considerable attention in recent decades due to their inherent biodegradability and tunable cytocompatibility. Macromolecular design in conjunction with rational monomer composition can direct architecture, self-assembly and chemical behavior, ultimately guiding the choice of appropriate application within the biomedical field. This review focuses on the applications of polypeptides alongside the synthetic advances in the ring opening polymerization of α-amino acid N-carboxyanhydrides achieved in the past five years. Key architectures obtained through NCA ROP or in combination with other polymerization methods are reviewed, as these play an important role in the wide range of applications towards which polypeptides have been applied.


Assuntos
Aminoácidos/química , Peptídeos/síntese química , Estrutura Molecular , Peptídeos/química , Polimerização
9.
Acc Chem Res ; 52(7): 1905-1914, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31246007

RESUMO

Climate change due to anthropogenic carbon dioxide emissions (e.g., combustion of fossil fuels) represents one of the most profound environmental disasters of this century. Equipping power plants with carbon capture and storage (CCS) technology has the potential to reduce current worldwide CO2 emissions. However, existing CCS schemes (i.e., amine scrubbing) are highly energy-intensive. The urgent abatement of CO2 emissions relies on the development of new, efficient technologies to capture CO2 from existing power plants. Membrane-based CO2 separation is an attractive technology that meets many of the requirements for energy-efficient industrial carbon capture. Within this domain, thin-film composite (TFC) membranes are particularly attractive, providing high gas permeance in comparison with conventional thicker (∼50 µm) dense membranes. TFC membranes are usually composed of three layers: (1) a bottom porous support layer; (2) a highly permeable intermediate gutter layer; and (3) a thin (<1 µm) species-selective top layer. A key challenge in the development of TFC membranes has been to simultaneously maximize the transmembrane gas permeance of the assembled membrane (by minimizing the gas resistance of each layer) while maintaining high gas-specific selectivity. In this Account, we provide an overview of our recent development of high-performance TFC membrane materials as well as insights into the unique fabrication strategies employed for the selective layer and gutter layer. Optimization of each layer of the membrane assembly individually results in significant improvements in overall membrane performance. First, incorporating nanosized fillers into the selective layer (poly(ethylene glycol)-based polymers) and reducing its thickness (to ca. 50 nm) through continuous assembly of polymers technology yields major improvements in CO2 permeance without loss of selectivity. Second, we focus on optimization of the middle gutter layer of TFC membranes. The development of enhanced gutter layers employing two- and three-dimensional metal-organic framework materials leads to considerable improvements in both CO2 permeance and selectivity compared with traditional poly(dimethylsiloxane) materials. Third, incorporation of a porous, flexible support layer culminates in a mechanically robust high-performance TFC membrane design that exhibits unprecedented CO2 separation performance and holds significant potential for industrial CO2 capture. Alternative strategies are also emerging, whereby the selective layer and gutter layer may be combined for enhanced membrane efficiency. This Account highlights the CO2 capture performance, current challenges, and future research directions in designing high-performance TFC membranes.

10.
Angew Chem Int Ed Engl ; 59(48): 21392-21396, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32761677

RESUMO

Photo-mediation offers unparalleled spatiotemporal control over controlled radical polymerizations (CRP). Photo-induced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization is particularly versatile owing to its oxygen tolerance and wide range of compatible photocatalysts. In recent years, broadband- and near-infrared (NIR)-mediated polymerizations have been of particular interest owing to their potential for solar-driven chemistry and biomedical applications. In this work, we present the first example of a novel photocatalyst for both full broadband- and NIR-mediated CRP in aqueous conditions. Well-defined polymers were synthesized in water under blue, green, red, and NIR light irradiation. Exploiting the oxygen tolerant and aqueous nature of our system, we also report PET-RAFT polymerization at the microliter scale in a mammalian cell culture medium.

11.
J Am Chem Soc ; 141(6): 2630-2635, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30721057

RESUMO

Inspired by nanotechnologies based on DNA strand displacement, herein we demonstrate that synthetic helical strand exchange can be achieved through tuning of poly(methyl methacrylate) (PMMA) triple-helix stereocomplexes. To evaluate the utility and robustness of helical strand exchange, stereoregular PMMA/polyethylene glycol (PEG) block copolymers capable of undergoing crystallization driven self-assembly via stereocomplex formation were prepared. Micelles with spherical or wormlike morphologies were formed by varying the molecular weight composition of the assembling components. Significantly, PMMA strand exchange was demonstrated and utilized to reversibly switch the micelles between different morphologies. This concept of strand exchange with PMMA-based triple-helix stereocomplexes offers new opportunities to program dynamic behaviors of polymeric materials, leading to scalable synthesis of "smart" nanosystems.


Assuntos
DNA/química , Polimetil Metacrilato/química , Modelos Moleculares , Conformação de Ácido Nucleico , Estereoisomerismo
12.
Chemistry ; 25(21): 5372-5388, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30707473

RESUMO

The use of ultrasound as an external stimulus for promoting polymerization reactions has received increasing attention in recent years. In this Review article, the fundamental processes that can lead to either the homolytic cleavage of polymer chains, or the sonolysis of solvent (or other) small molecules, under the application of ultrasound are described. These reactions promote the production of reactive radicals, which can be utilized in chain-growth radical polymerizations under the right conditions. A full historical overview of the development of ultrasound-assisted radical polymerization is provided, with special attention given to the recently described systems that are "controlled" by methods of reversible (radical) deactivation. Perspectives are shared on what challenges still remain in polymer sonochemistry, as well as new areas that are yet to be explored.

13.
Macromol Rapid Commun ; 40(18): e1900220, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31259456

RESUMO

In this review, the power of a classical chemical reaction, the Fenton reaction for initiating radical polymerizations, is demonstrated. The reaction between the Fenton reagents (i.e., Fe2+ and H2 O2 ) generates highly reactive hydroxyl radicals, which can act as radical initiators for the polymerization of vinyl monomers. Since the Fenton reaction is fast, easy to set up, cheap, and biocompatible, this unique chemistry is widely employed in various polymer synthesis studies via free radical polymerization or reversible addition-fragmentation chain transfer polymerization, and is utilized in a wide range of applications, such as the fabrication of biomaterials, hydrogels, and core-shell particles. Biologically activated Fenton-mediated radical polymerization, which can be performed in aerobic environments, are particularly useful for applications in biomedical systems.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Polimerização , Animais , Materiais Biocompatíveis/síntese química , Radicais Livres/química , Hidrogéis/síntese química , Oxirredução , Polímeros/síntese química
14.
J Am Chem Soc ; 140(5): 1945-1951, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29377680

RESUMO

The triple-helix stereocomplex of poly(methyl methacrylate) (PMMA) is a unique example of a multistranded synthetic helix that has significant utility and promise in materials science and nanotechnology. To gain a fundamental understanding of the underlying assembly process, discrete stereoregular oligomer libraries were prepared by combining stereospecific polymerization techniques with automated flash chromatography purification. Stereocomplex assembly of these discrete building blocks enabled the identification of (1) the minimum degree of polymerization required for the stereocomplex formation and (2) the dependence of the helix crystallization mode on the length of assembling precursors. More significantly, our experiments resolved binding selectivity between helical strands with similar molecular weights. This presents new opportunities for the development of next-generation polymeric materials based on a triple-helix motif.


Assuntos
Polimetil Metacrilato/química , Sítios de Ligação , Estrutura Molecular , Peso Molecular , Estereoisomerismo
15.
Chem Rev ; 116(12): 6743-836, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27299693

RESUMO

Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.


Assuntos
Substâncias Macromoleculares/química , Polímeros/química , Catálise , Ciclização , Polimerização , Estereoisomerismo
16.
Macromol Rapid Commun ; 39(19): e1800179, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29744968

RESUMO

A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H2 O2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization.


Assuntos
Peróxido de Hidrogênio/química , Polimerização , Polímeros/química , Polímeros/síntese química
17.
Angew Chem Int Ed Engl ; 57(28): 8597-8602, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29767444

RESUMO

A novel composite membrane consisting of an interconnected MOF scaffold coated with cross-linked poly(ethylene glycol) (PEG) has been developed. As a result of its unique structure, the membrane shows an exceptional 18-fold permeability enhancement as compared to pristine PEG membranes, without compromising the selectivity. This performance is unattainable with current mixed-matrix membranes (MMMs). Our optimized membrane has a permeability of 2700 Barrer with a CO2 /N2 selectivity of 35, which surpasses the latest Robeson upper bound.

18.
Angew Chem Int Ed Engl ; 57(32): 10288-10292, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29920886

RESUMO

The use of hemoglobin (Hb) contained within red blood cells to drive a controlled radical polymerization via a reversible addition-fragmentation chain transfer (RAFT) process is reported for the first time. No pre-treatment of the Hb or cells was required prior to their use as polymerization catalysts, indicating the potential for synthetic engineering in complex biological microenvironments without the need for ex vivo techniques. Owing to the naturally occurring prevalence of the reagents employed in the catalytic system (Hb and hydrogen peroxide), this approach may facilitate the development of new strategies for in vivo cell engineering with synthetic macromolecules.

19.
Bioconjug Chem ; 28(7): 1859-1866, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28548819

RESUMO

Particle-cell interactions are governed by, among other factors, the composition and surface properties of the particles. Herein, we report the preparation of various polymer capsules with different compositions and properties via atom transfer radical polymerization mediated continuous assembly of polymers (CAPATRP), where the cellular interactions of these capsules, particularly fouling and specific targeting, are examined by flow cytometry and deconvolution microscopy. Acrylated eight-arm poly(ethylene glycol) (8-PEG) and poly(N-(2-hydroxypropyl)-methacrylamide) (PHPMA) as well as methacrylated hyaluronic acid (HA), poly(glutamic acid) (PGA), and poly(methacrylic acid) (PMA) are used as macro-cross-linkers to obtain a range of polymer capsules with different compositions (PEG, PHPMA, HA, PGA, and PMA). Capsules composed of low-fouling polymers, PEG and PHPMA, show negligible association with macrophage Raw 264.7, monocyte THP-1, and HeLa cells. HA capsules, although moderately low-fouling (<22%) to HeLa, BT474, Raw 264.7, and THP-1 cells, exhibit high targeting specificity to CD44-over-expressing MDA-MB-231 cells. In contrast, PGA and PMA capsules show high cellular association toward phagocytic Raw 264.7 and THP-1 cells. These findings demonstrate the capability of the CAPATRP technique in preparing polymer capsules with specific cellular interactions.


Assuntos
Membrana Celular/metabolismo , Polímeros/química , Animais , Cápsulas/síntese química , Cápsulas/química , Cápsulas/metabolismo , Reagentes de Ligações Cruzadas/química , Citometria de Fluxo , Células HeLa , Humanos , Camundongos , Microscopia , Polímeros/síntese química , Polímeros/metabolismo , Células RAW 264.7 , Propriedades de Superfície
20.
Chemistry ; 23(30): 7221-7226, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28382790

RESUMO

Fine control over the architecture and/or microstructure of synthetic polymers is fast becoming a reality owing to the development of efficient and versatile polymerization techniques and conjugation reactions. However, the transition of these syntheses to automated, programmable, and high-throughput operating systems is a challenging step needed to translate the vast potential of precision polymers into machine-programmable polymers for biological and functional applications. Chain-growth polymerizations are particularly appealing for their ability to form structurally and chemically well-defined macromolecules through living/controlled polymerization techniques. Even using the latest polymerization technologies, the macromolecular engineering of complex functional materials often requires multi-step syntheses and purification of intermediates, and results in sub-optimal yields. To develop a proof-of-concept of a framework polymerization technique that is readily amenable to automation requires several key characteristics. In this study, a new approach is described that is believed to meet these requirements, thus opening avenues toward automated polymer synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA