Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 665, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805543

RESUMO

BACKGROUND: Pulmonary Tuberculosis is a major public health problem endangering people's health, a scientifically accurate predictive model is of great practical significance for the prevention and treatment of pulmonary tuberculosis. METHODS: The reported incidence data of pulmonary tuberculosis were from the National Public Health Science Data Center ( https://www.phsciencedata.cn/ ). The ARIMA, LSTM, EMD-SARIMA, EMD-LSTM, EMD-ARMA-LSTM models were established using the reported monthly incidence of tuberculosis reported in China from January 2008 to December 2018. The MSE, MAE, RMSE and MAPE were used to evaluate the performance of the models to determine the best model. RESULTS: Comparing decomposition-based single model with undecomposed single model, it was found that: when predicting the incidence trend in the next year, compared with SARIMA model, the MSE, MAE, RMSE and MAPE of EMD-SARIMA decreased by 39.3%, 19.0%, 22.1% and 19.8%, respectively. The MSE, MAE, RMSE and MAPE of EMD-LSTM were reduced by 40.5%, 12.8%, 22.9% and 12.7%, respectively, compared with the LSTM model; Comparing the decomposition-based hybrid model with the decomposition-based single model, it was found that: when predicting the incidence trend in the next year, compared with EMD-SARIMA model, the MSE, MAE, RMSE and MAPE of EMD-ARMA-LSTM model decreased by 21.7%, 10.6%, 11.5% and 11.2%, respectively. The MSE, MAE, RMSE and MAPE of EMD-ARMA-LSTM were reduced by 16.7%, 9.6%, 8.7% and 12.3%, respectively, compared with EMD-LSTM model. Furthermore, the performance of the model were consistent when predicting the incidence trend in the next 3 months, 6 months and 9 months. CONCLUSION: The prediction performance of the decomposition-based single model is better than that of the undecomposed single model, and the prediction performance of the combined model using the advantages of different models is better than that of the decomposition-based single model, so the EMD-ARMA-LSTM combination model can improve the prediction accuracy better than other models, which can provide a theoretical basis for predicting the epidemic trend of pulmonary tuberculosis and formulating prevention and control policies.


Assuntos
Tuberculose Pulmonar , Tuberculose , Humanos , Tuberculose/epidemiologia , Tuberculose Pulmonar/epidemiologia , Previsões , China/epidemiologia , Incidência , Modelos Estatísticos
2.
BMC Infect Dis ; 23(1): 71, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747126

RESUMO

BACKGROUND: Influenza is an acute respiratory infectious disease that is highly infectious and seriously damages human health. Reasonable prediction is of great significance to control the epidemic of influenza. METHODS: Our Influenza data were extracted from Shanxi Provincial Center for Disease Control and Prevention. Seasonal-trend decomposition using Loess (STL) was adopted to analyze the season characteristics of the influenza in Shanxi Province, China, from the 1st week in 2010 to the 52nd week in 2019. To handle the insufficient prediction performance of the seasonal autoregressive integrated moving average (SARIMA) model in predicting the nonlinear parts and the poor accuracy of directly predicting the original sequence, this study established the SARIMA model, the combination model of SARIMA and Long-Short Term Memory neural network (SARIMA-LSTM) and the combination model of SARIMA-LSTM based on Singular spectrum analysis (SSA-SARIMA-LSTM) to make predictions and identify the best model. Additionally, the Mean Squared Error (MSE), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used to evaluate the performance of the models. RESULTS: The influenza time series in Shanxi Province from the 1st week in 2010 to the 52nd week in 2019 showed a year-by-year decrease with obvious seasonal characteristics. The peak period of the disease mainly concentrated from the end of the year to the beginning of the next year. The best fitting and prediction performance was the SSA-SARIMA-LSTM model. Compared with the SARIMA model, the MSE, MAE and RMSE of the SSA-SARIMA-LSTM model decreased by 38.12, 17.39 and 21.34%, respectively, in fitting performance; the MSE, MAE and RMSE decreased by 42.41, 18.69 and 24.11%, respectively, in prediction performances. Furthermore, compared with the SARIMA-LSTM model, the MSE, MAE and RMSE of the SSA-SARIMA-LSTM model decreased by 28.26, 14.61 and 15.30%, respectively, in fitting performance; the MSE, MAE and RMSE decreased by 36.99, 7.22 and 20.62%, respectively, in prediction performances. CONCLUSIONS: The fitting and prediction performances of the SSA-SARIMA-LSTM model were better than those of the SARIMA and the SARIMA-LSTM models. Generally speaking, we can apply the SSA-SARIMA-LSTM model to the prediction of influenza, and offer a leg-up for public policy.


Assuntos
Influenza Humana , Humanos , Influenza Humana/epidemiologia , Previsões , Incidência , Redes Neurais de Computação , China/epidemiologia , Modelos Estatísticos
3.
BMC Public Health ; 23(1): 1611, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37612596

RESUMO

BACKGROUND: The debate on the relationship between social capital and health is still ongoing. To enhance previous research, this study uses data drawn from China to analyse the situations in which social capital is related to good health and the various configurations that result in good health outcomes. METHODS: Using the data of China Family Panel Studies, the conditions of age, gender, marriage, education, income, structural social capital and cognitive social capital were included to analyse the sufficient and necessary conditions for achieving good general health and their different configurations using the fsQCA method. RESULTS: None of the listed conditions were prerequisites for excellent general health in terms of either their presence or their absence. The sufficiency analysis found 11 configurations with an average of 3-4 conditions per configuration; in no configuration was the condition of social capital present alone. Structured social capital and cognitive social capital exhibited negative states in configurations 1 and 2, respectively. The most prevalent factor in all configurations was the condition of age. CONCLUSIONS: The relationship between social capital and health is both positive and negative, with cognitive social capital playing a larger role in the positive relationship than structural social capital. Social capital is neither a necessary nor a sufficient condition for health, and it must be combined with a variety of other factors to promote health. A variety of methods can be used to promote an individual's health, as different populations require different approaches to good general health, and no single pathway applies to all populations. In the Chinese population, an individual's age is a significant determinant of their health status.


Assuntos
Saúde , Capital Social , Determinantes Sociais da Saúde , Humanos , Povo Asiático , China/epidemiologia , Escolaridade , Promoção da Saúde
4.
BMC Public Health ; 23(1): 2164, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932692

RESUMO

BACKGROUND: Since the inconspicuous nature of early signs associated with Chronic Obstructive Pulmonary Disease (COPD), individuals often remain unidentified, leading to suboptimal opportunities for timely prevention and treatment. The purpose of this study was to create an explainable artificial intelligence framework combining data preprocessing methods, machine learning methods, and model interpretability methods to identify people at high risk of COPD in the smoking population and to provide a reasonable interpretation of model predictions. METHODS: The data comprised questionnaire information, physical examination data and results of pulmonary function tests before and after bronchodilatation. First, the factorial analysis for mixed data (FAMD), Boruta and NRSBoundary-SMOTE resampling methods were used to solve the missing data, high dimensionality and category imbalance problems. Then, seven classification models (CatBoost, NGBoost, XGBoost, LightGBM, random forest, SVM and logistic regression) were applied to model the risk level, and the best machine learning (ML) model's decisions were explained using the Shapley additive explanations (SHAP) method and partial dependence plot (PDP). RESULTS: In the smoking population, age and 14 other variables were significant factors for predicting COPD. The CatBoost, random forest, and logistic regression models performed reasonably well in unbalanced datasets. CatBoost with NRSBoundary-SMOTE had the best classification performance in balanced datasets when composite indicators (the AUC, F1-score, and G-mean) were used as model comparison criteria. Age, COPD Assessment Test (CAT) score, gross annual income, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), anhelation, respiratory disease, central obesity, use of polluting fuel for household heating, region, use of polluting fuel for household cooking, and wheezing were important factors for predicting COPD in the smoking population. CONCLUSION: This study combined feature screening methods, unbalanced data processing methods, and advanced machine learning methods to enable early identification of COPD risk groups in the smoking population. COPD risk factors in the smoking population were identified using SHAP and PDP, with the goal of providing theoretical support for targeted screening strategies and smoking population self-management strategies.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fumantes , Humanos , Adolescente , Inteligência Artificial , Fumar Tabaco , Fumar
5.
Front Public Health ; 12: 1326225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145164

RESUMO

Background: The Centre for Disease Control and Prevention in Yangquan, China, has taken a series of preventive and control measures in response to the increasing trend of Kala-Azar. In response, we propose a new model to more scientifically evaluate the effectiveness of these interventions. Methods: We obtained the incidence data of Kala-Azar from 2017 to 2021 from the Centre for Disease Control and Prevention (CDC) in Yangquan. We constructed Poisson segmented regression model, harmonic Poisson segmental regression model, and improved harmonic Poisson segmented regression model, and used the three models to explain the intervention effect, respectively. Finally, we selected the optimal model by comparing the fitting effects of the three models. Results: The primary analysis showed an underlying upward trend of Kala-Azar before intervention [incidence rate ratio (IRR): 1.045, 95% confidence interval (CI): 1.027-1.063, p < 0.001]. In terms of long-term effects, the rise of Kala-Azar slowed down significantly after the intervention (IRR:0.960, 95%CI:0.927-0.995, p = 0.026), and the risk of Kala-Azar increased by 0.3% for each additional month after intervention (ß1 + ß3 = 0.003, IRR = 1.003). The results of the model fitting effect showed that the improved harmonic Poisson segmental regression model had the best fitting effect, and the values of MSE, MAE, and RMSE were the lowest, which were 0.017, 0.101, and 0.130, respectively. Conclusion: In the long term, the intervention measures taken by the Yangquan CDC can well curb the upward trend of Kala-Azar. The improved harmonic Poisson segmented regression model has higher fitting performance, which can provide a certain scientific reference for the evaluation of the intervention effect of seasonal infectious diseases.


Assuntos
Leishmaniose Visceral , Humanos , China/epidemiologia , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/epidemiologia , Distribuição de Poisson , Incidência , Análise de Regressão , Masculino , Feminino , Modelos Estatísticos
6.
Sci Rep ; 13(1): 12718, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543637

RESUMO

Diabetes mellitus (DM) has become the third chronic non-infectious disease affecting patients after tumor, cardiovascular and cerebrovascular diseases, becoming one of the major public health issues worldwide. Detection of early warning risk factors for DM is key to the prevention of DM, which has been the focus of some previous studies. Therefore, from the perspective of residents' self-management and prevention, this study constructed Bayesian networks (BNs) combining feature screening and multiple resampling techniques for DM monitoring data with a class imbalance in Shanxi Province, China, to detect risk factors in chronic disease monitoring programs and predict the risk of DM. First, univariate analysis and Boruta feature selection algorithm were employed to conduct the preliminary screening of all included risk factors. Then, three resampling techniques, SMOTE, Borderline-SMOTE (BL-SMOTE) and SMOTE-ENN, were adopted to deal with data imbalance. Finally, BNs developed by three algorithms (Tabu, Hill-climbing and MMHC) were constructed using the processed data to find the warning factors that strongly correlate with DM. The results showed that the accuracy of DM classification is significantly improved by the BNs constructed by processed data. In particular, the BNs combined with the SMOTE-ENN resampling improved the most, and the BNs constructed by the Tabu algorithm obtained the best classification performance compared with the hill-climbing and MMHC algorithms. The best-performing joint Boruta-SMOTE-ENN-Tabu model showed that the risk factors of DM included family history, age, central obesity, hyperlipidemia, salt reduction, occupation, heart rate, and BMI.


Assuntos
Algoritmos , Diabetes Mellitus , Humanos , Teorema de Bayes , Fatores de Risco , Análise Fatorial
7.
Front Pharmacol ; 14: 1272454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841920

RESUMO

Background: Topical lidocaine microemulsion preparations with low toxicity, low irritation, strong transdermal capability and convenient administration are urgently needed. Methods: Box-Behnken design was performed for three preparation conditions of 5% lidocaine microemulsions: mass ratio of the mass ratio of surfactant/(oil phase + surfactant) (X1), the mass ratio of olive oil/(α-linolenic acid + linoleic acid) (X2) and the water content W% (X3). Then, five multi-objective genetic algorithms were used to optimize the three evaluation indices to optimize the effects of lidocaine microemulsion preparations. Finally, the ideal optimization scheme was experimentally verified. Results: Non-dominated Sorting Genetic Algorithm-II was used for 30 random searches. Among these, Scheme 2: X1 = 0.75, X2 = 0.35, X3 = 75%, which resulted in Y1 = 0.17 µg/(cm2·s) and Y2 = 0.74 mg/cm2; and the Scheme 19: X1 = 0.68, X2 = 1.42, X3 = 75% which resulted in Y1 = 0.14 µg/(cm2·s) and Y2 = 0.80 mg/cm2, provided the best matches for the objective function requirements. The maximum and average fitness of the method have reached stability after 3 generations of evolution. Experimental verification of the above two schemes showed that there were no statistically significant differences between the measured values of Y1 and Y2 and the predicted values obtained by optimization (p > 0.05) and are close to the target value. Conclusion: Two lidocaine microemulsion preparation protocols were proposed in this study. These preparations resulted in good transdermal performance or long anesthesia duration, respectively.

8.
Comput Methods Programs Biomed ; 230: 107340, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640604

RESUMO

BACKGROUND AND OBJECTIVE: Since the early symptoms of chronic obstructive pulmonary disease (COPD) are not obvious, patients are not easily identified, causing improper time for prevention and treatment. In present study, machine learning (ML) methods were employed to construct a risk prediction model for COPD to improve its prediction efficiency. METHODS: We collected data from a sample of 5807 cases with a complete COPD diagnosis from the 2019 COPD Surveillance Program in Shanxi Province and extracted 34 potentially relevant variables from the dataset. Firstly, we used feature selection methods (i.e., Generalized elastic net, Lasso and Adaptive lasso) to select ten variables. Afterwards, we employed supervised classifiers for class imbalanced data by combining the cost-sensitive learning and SMOTE resampling methods with the ML methods (Logistic Regression, SVM, Random Forest, XGBoost, LightGBM, NGBoost and Stacking), respectively. Last, we assessed their performance. RESULTS: The cough frequently at age 14 and before and other 9 variables are significant parameters for COPD. The Stacking heterogeneous ensemble model showed relatively good performance in the unbalanced datasets. The Logistic Regression with class weighting enjoyed the best classification performance in the balancing data when these composite indicators (AUC, F1-Score and G-mean) were used as criteria for model comparison. The values of F1-Score and G-mean for the top three ML models were 0.290/0.660 for Logistic Regression with class weighting, 0.288/0.649 for Stacking with synthetic minority oversampling technique (SMOTE), and 0.285/0.648 for LightGBM with SMOTE. CONCLUSIONS: This paper combining feature selection methods, unbalanced data processing methods and machine learning methods with data from disease surveillance questionnaires and physical measurements to identify people at risk of COPD, concluded that machine learning models based on survey questionnaires could provide an automated identification for patients at risk of COPD, and provide a simple and scientific aid for early identification of COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Adolescente , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Aprendizado de Máquina , Modelos Logísticos , Máquina de Vetores de Suporte
9.
Sci Rep ; 12(1): 7563, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534641

RESUMO

This study aimed to construct Bayesian networks (BNs) to analyze the network relationships between COPD and its influencing factors, and the strength of each factor's influence on COPD was reflected through network reasoning. Elastic Net and Max-Min Hill-Climbing (MMHC) algorithm were adopted to screen the variables on the surveillance data of COPD among residents in Shanxi Province, China from 2014 to 2015, and construct BNs respectively. 10 variables finally entered the model after screening by Elastic Net. The BNs constructed by MMHC showed that smoking status, household air pollution, family history, cough, air hunger or dyspnea were directly related to COPD, and Gender was indirectly linked to COPD through smoking status. Moreover, smoking status, household air pollution and family history were the parent nodes of COPD, and cough, air hunger or dyspnea represented the child nodes of COPD. In other words, smoking status, household air pollution and family history were related to the occurrence of COPD, and COPD would make patients' cough, air hunger or dyspnea worse. Generally speaking, BNs could reveal the complex network linkages between COPD and its relevant factors well, making it more convenient to carry out targeted prevention and control of COPD.


Assuntos
Tosse , Doença Pulmonar Obstrutiva Crônica , Teorema de Bayes , Criança , Dispneia , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA