Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(50): 19177-19190, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30323063

RESUMO

MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression at the post-transcriptional level and are involved in the regulation of the formation, maintenance, and function of skeletal muscle. Using miRNA sequencing and bioinformatics analysis, we previously found that the miRNA miR-664-5p is significantly differentially expressed in longissimus dorsi muscles of Rongchang pigs. However, the molecular mechanism by which miR-664-5p regulates myogenesis remains unclear. In this study, using flow cytometry, 5-ethynyl-2'-deoxyuridine staining, and cell count and immunofluorescent assays, we found that cell-transfected miR-664-5p mimics greatly promoted proliferation of C2C12 mouse myoblasts by increasing the proportion of cells in the S- and G2-phases and up-regulating the expression of cell cycle genes. Moreover, miR-664-5p inhibited myoblast differentiation by down-regulating myogenic gene expression. In contrast, miR-664-5p inhibitor repressed myoblast proliferation and promoted myoblast differentiation. Mechanistically, using dual-luciferase reporter gene experiments, we demonstrated that miR-664-5p directly targets the 3'-UTR of serum response factor (SRF) and Wnt1 mRNAs. We also observed that miR-664-5p inhibits both mRNA and protein levels of SRF and Wnt1 during myoblast proliferation and myogenic differentiation, respectively. Furthermore, the activating effect of miR-664-5p on myoblast proliferation was attenuated by SRF overexpression, and miR-664-5p repressed myogenic differentiation by diminishing the accumulation of nuclear ß-catenin. Of note, miR-664-5p's inhibitory effect on myogenic differentiation was abrogated by treatment with Wnt1 protein, the key activator of the Wnt/ß-catenin signaling pathway. Collectively, our findings suggest that miR-664-5p controls SRF and canonical Wnt/ß-catenin signaling pathways in myogenesis.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , MicroRNAs/metabolismo , Mioblastos/metabolismo , Fator de Resposta Sérica/metabolismo , Proteína Wnt1/metabolismo , Animais , Regulação para Baixo , Células HEK293 , Humanos , Camundongos , Desenvolvimento Muscular/genética , RNA Mensageiro/genética , Fator de Resposta Sérica/genética , Via de Sinalização Wnt , Proteína Wnt1/genética
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(2): 132-142, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29133280

RESUMO

Methionine adenosyltransferase (MAT) is a critical biological enzyme and that can catalyze L-met and ATP to form S-adenosylmethionine (SAM), which is acted as a biological methyl donor in transmethylation reactions involving histone methylation. However, the regulatory effect of methionine adenosyltransferase2A (MAT2A) and its associated methyltransferase activity on adipogenesis is still unclear. In this study, we investigate the effect of MAT2A on adipogenesis and its potential mechanism on histone methylation during porcine preadipocyte differentiation. We demonstrated that overexpression of MAT2A promoted lipid accumulation and significantly up-regulated the levels of adipogenic marker genes including PPARγ, SREBP-1c, and aP2. Whereas, knockdown of MAT2A or inhibition MATII enzyme activity inhibited lipid accumulation and down-regulated the expression of the above-mentioned genes. Mechanistic studies revealed that MAT2A interacted with histone-lysine N-methyltransferase Ezh2 and was recruited to Wnt10b promoter to repress its expression by promoting H3K27 methylation. Additionally, MAT2A interacted with MafK protein and was recruited to MARE element at Wnt10b gene. The catalytic activity of MAT2A as well as its interacting factor-MAT2B, was required for Wnt10b repression and supplying SAM for methyltransferases. Moreover, MAT2A suppressed Wnt10b expression and further inhibited Wnt/ß-catenin signaling to promote adipogenesis.


Assuntos
Adipogenia/fisiologia , Loci Gênicos , Histonas/metabolismo , Metionina Adenosiltransferase/metabolismo , Elementos de Resposta , Proteínas Wnt/metabolismo , Animais , Histonas/genética , Metionina Adenosiltransferase/genética , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas Wnt/genética
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 420-432, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29414510

RESUMO

Adiponectin (AdipoQ) is an adipocyte-derived hormone with positive function on systemic glucose and lipid metabolism. Long noncoding RNA (lncRNA) is emerging as a vital regulator of adipogenesis. However, AdipoQ-related lncRNAs in lipid metabolism have not been explored. Here, AdipoQ antisense (AS) lncRNA was first identified, and we further found that it inhibited adipogenesis. The half-life of AdipoQ AS lncRNA was 10 h, whereas that of AdipoQ mRNA was 4 h. During adipogenic differentiation, AdipoQ AS lncRNA translocated from nucleus to cytoplasm. AdipoQ AS lncRNA and AdipoQ mRNA formed an RNA duplex. Moreover, AdipoQ AS lncRNA delivered via injection of adenovirus expressing AdipoQ AS lncRNA decreases white adipose tissue (WAT), brown adipose tissue (BAT) and liver triglycerides (TG) in mice consuming a high fat diet (HFD). Interestingly, the non-overlapping region of AdipoQ AS lncRNA improved serum glucose tolerance and insulin sensitivity in HFD mice, but not AdipoQ AS lncRNA. In conclusion, AdipoQ AS lncRNA transfer from nucleus to cytoplasm inhibits adipogenesis through formation of an AdipoQ AS lncRNA/AdipoQ mRNA duplex to suppress the translation of AdipoQ mRNA. Taken together, we suggest that AdipoQ AS lncRNA is a novel therapeutic target for obesity-related metabolic diseases.


Assuntos
Adipogenia/genética , Adiponectina/genética , Biossíntese de Proteínas/genética , RNA Longo não Codificante/genética , Adipócitos/metabolismo , Adiponectina/metabolismo , Adiposidade/genética , Animais , Sequência de Bases , Dieta Hiperlipídica , Genoma , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
PeerJ ; 10: e13102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310157

RESUMO

Background: Diabetes mellitus is a growing global health challenge and affects patients of all ages. Treatment aims to keep blood glucose levels close to normal and to prevent or delay complications. However, adherence to antidiabetic medicines is often unsatisfactory. Purpose: Here, we established and internally validated a medication nonadherence risk nomogram for use in Chinese type 2 diabetes mellitus (T2DM) patients. Methods: This cross-sectional study was carried out from July-December 2020 on randomly selected T2DM patients visiting a diabetes clinic and included 753 participants. Adherence was analyzed based on an eight-item Morisky Medication Adherence Scale (MMAS-8). Other data, including patient demographics, treatment, complications, and comorbidities, were also collected on questionnaires. Optimization of feature selection to develop the medication nonadherence risk model was achieved using the least absolute shrinkage and selection operator regression model (LASSO). A prediction model comprising features selected from LASSO model was designed by applying multivariable logistic regression analysis. The decision curve analysis, calibration plot, and C-index were utilized to assess the performance of the model in terms of discrimination, calibration, and clinical usefulness. Bootstrapping validation was applied for internal validation. Results: The prediction nomogram comprised several factors including sex, marital status, education level, employment, distance, self-monitoringofbloodglucose, disease duration, and dosing frequency of daily hypoglycemics (pills, insulin, or glucagon-like peptide-1). The model exhibited good calibration and good discrimination (C-index = 0.79, 95% CI [0.75-0.83]). In the validation samples, a high C-index (0.75) was achieved. Results of the decision curve analysis revealed that the nonadherence nomogram could be applied in clinical practice in cases where the intervention is decided at a nonadherence possibility threshold of 12%. Conclusion: The number of patients who adhere to anti-diabetes therapy was small. Being single male, having no formal education, employed, far from hospital, long disease duration, and taking antidiabetics twice or thrice daily, had significant negative correlation with medication adherence. Thus, strategies for improving adherence are urgently needed.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Masculino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nomogramas , Estudos Transversais , Hipoglicemiantes/uso terapêutico , Adesão à Medicação
5.
Cell Signal ; 95: 110341, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491006

RESUMO

Long non-coding RNAs (lncRNAs) play essential roles in myogenesis. Here, we identified a novel long non-coding RNA, named COPS3 AS lncRNA (COP9 signalosome complex subunit 3 antisense lncRNA), which was transcribed from the mouse COPS3 gene antisense strand and highly expressed in glycolytic muscle fibers. Functionally, COPS3 AS lncRNA knockdown inhibited myogenic differentiation in myoblasts, whereas its overexpression promoted the process. Moreover, COPS3 AS lncRNA maintained the fast-twitch myotubes phenotype. Mechanistically, although COPS3 AS lncRNA did not form AS lncRNA/mRNA dimer with COPS3 mRNA, it as a competing endogenous RNA (ceRNA) to sponge miR-762, promoted myogenic differentiation and Fast-MyHC expression by modulating miR-762 target gene myogenic differentiation 1 (MyoD1). Taken together, COPS3 AS lncRNA is a key candidate regulator of myogenesis and fast-MyHC myotubes specification by miR-762/MyoD signalling axis.


Assuntos
Complexo do Signalossomo COP9 , MicroRNAs , Proteínas Proto-Oncogênicas , RNA Longo não Codificante , Animais , Complexo do Signalossomo COP9/genética , Diferenciação Celular , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
6.
Gene ; 696: 54-62, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772521

RESUMO

Intramuscular fat (IMF), which is modulated by the number and size of intramuscular preadipocytes, plays a key role in pork quality. DNA (cytosine-5)-methyltransferase 3A (DNMT3A), an enzyme that catalyzes the transfer of methyl groups to specific CpG structures in DNA, is involved in the management of diverse intracellular processes. However, the physiological functions of DNMT3A in proliferation and differentiation of porcine intramuscular preadipocytes have not been clearly established. Here, we found that DNMT3A significantly promoted the proliferation, while inhibited the differentiation of intramuscular preadipocytes. We demonstrated that overexpression of DNMT3A promoted the expression of cell proliferation markers but significantly decreased the expression of p21 to repress cell proliferation by the methylation of p21 promoter. Moreover, overexpression of DNMT3A decreased lipid accumulation and significantly down-regulated the levels of adipogenic marker genes including PPARg (Peroxisome proliferator-activated receptor gamma), SREBP-1c (Sterol regulatory element-binding protein 1c), and aP2 (FABP4, fatty acid binding protein 4) through the methylation of PPARg promoter. The blocking effect of DNMT3A on adipogenesis can be rescued by rosiglitazone treatment. Collectively, these findings illustrated the essential role of DNMT3A in the proliferation and differentiation of porcine intramuscular preadipocytes, and provide a potential target to improve pork quality.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , PPAR gama/metabolismo , Adipócitos/fisiologia , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Metilação de DNA/fisiologia , Regulação para Baixo , Masculino , Músculo Esquelético/citologia , Regiões Promotoras Genéticas/genética , Rosiglitazona/farmacologia , Suínos
7.
Anim Cells Syst (Seoul) ; 21(4): 269-277, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30460078

RESUMO

MicroRNAs have been regarded to play a crucial role in the proliferation of different cell types including preadipocytes. In our study, we observed that miR-129-5p was down-regulated during 3T3-L1 preadipocyte proliferation, while the expression of G3BP1 showed a contrary tendency. 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assay and flow cytometry showed that overexpression of miR-129-5p could bring about a reduction in S-phase cells and G2-phase arrest. Additional study indicated that miR-129-5p impaired cell cycle-related genes in 3T3-L1 preadipocytes. Importantly, it showed that miR-129-5p directly targeted the 3'UTR of G3BP1 and the expression of G3BP1 was inhibited by miR-129-5p mimic. Moreover, miR-129-5p mimic activated the p38 signaling pathway through up-regulating p38 and the phosphorylation level of p38. In a word, results in our study revealed that miR-129-5p suppressed preadipocyte proliferation via targeting G3BP1 and activating the p38 signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA