RESUMO
Colchicine is an ancient herbal drug derived from Colchicum autumnale. It was first used to treat familial Mediterranean fever and gout. Based on its unique efficacy as an anti-inflammatory agent, colchicine has been used in the therapy of cardiovascular diseases including coronary artery disease, atherosclerosis, recurrent pericarditis, vascular restenosis, heart failure, and myocardial infarction. More recently, colchicine has also shown therapeutic efficacy in alleviating cardiovascular complications of COVID-19. COLCOT and LoDoCo2 are two milestone clinical trials that confirm the curative effect of long-term administration of colchicine in reducing the incidence of cardiovascular events in patients with coronary artery disease. There is growing interest in studying the anti-inflammatory mechanisms of colchicine. The anti-inflammatory action of colchicine is mediated mainly through inhibiting the assembly of microtubules. At the cellular level, colchicine inhibits the following: (1) endothelial cell dysfunction and inflammation; (2) smooth muscle cell proliferation and migration; (3) macrophage chemotaxis, migration, and adhesion; (4) platelet activation. At the molecular level, colchicine reduces proinflammatory cytokine release and inhibits NF-κB signaling and NLRP3 inflammasome activation. In this review, we summarize the current clinical trials with proven curative effect of colchicine in treating cardiovascular diseases. We also systematically discuss the mechanisms of colchicine action in cardiovascular therapeutics. Altogether, colchicine, a bioactive constituent from an ancient medicinal herb, exerts unique anti-inflammatory effects and prominent cardiovascular actions, and will charter a new page in cardiovascular medicine.
Assuntos
Tratamento Farmacológico da COVID-19 , Fármacos Cardiovasculares , Doença da Artéria Coronariana , Infarto do Miocárdio , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Colchicina/farmacologia , Colchicina/uso terapêutico , Doença da Artéria Coronariana/tratamento farmacológico , Humanos , Infarto do Miocárdio/tratamento farmacológicoRESUMO
Stimulation of the angiotensin II type 2 receptor (AT2R) evokes protective effects in various cardiovascular diseases. Thus, this study aimed to investigate the effects of AT2R stimulation, with or without AT1R blockade, in a model of hypertension with concomitant type 1 diabetes mellitus (T1DM). Spontaneously hypertensive rats (SHRs) were given either citrate or a single dose of streptozotocin (STZ; 55 mg/kg, i.p.) to induce diabetes. After 4 weeks of diabetes, animals were administered either a vehicle (saline), AT2R agonist, ß-Pro7Ang III (0.1 mg/kg/day via osmotic mini-pump), AT1R blocker, candesartan (2 mg/kg/day via drinking water), or a combination of both for a further 8 weeks. ß-Pro7Ang III treatment had no effect on blood pressure, but attenuated the significant increase in cardiac interstitial collagen and protein expression of fibrotic and inflammatory markers, and superoxide levels that was evident in diabetic SHRs. These effects were not observed with candesartan, despite its blood pressure lowering effects. Although ß-Pro7Ang III had no effect on aortic fibrosis, it significantly attenuated MCP-1 protein expression and superoxide levels when compared to both the non-diabetic and diabetic SHRs, to a similar extent as candesartan. In both the heart and vasculature, the effects of ß-Pro7Ang III in combination with candesartan were similar to those of ß-Pro7Ang III alone, and superior to candesartan alone. It was concluded that in hypertension with concomitant diabetes, AT2R stimulation with a novel ligand alone, or in combination with AT1R blockade, improved the cardiac and vascular structural changes that were strongly associated with inflammation and oxidative stress, independent of blood pressure regulation.
Assuntos
Diabetes Mellitus , Hipertensão , Animais , Ratos , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Ratos Endogâmicos SHR , Receptor Tipo 1 de Angiotensina/metabolismo , Superóxidos , CardiotônicosRESUMO
The pathogen Staphylococcus aureus can readily develop antibiotic resistance and evade the human immune system, which is associated with reduced levels of neutrophil recruitment. Here, we present a class of antibacterial peptides with potential to act both as antibiotics and as neutrophil chemoattractants. The compounds, which we term 'antibiotic-chemoattractants', consist of a formylated peptide (known to act as chemoattractant for neutrophil recruitment) that is covalently linked to the antibiotic vancomycin (known to bind to the bacterial cell wall). We use a combination of in vitro assays, cellular assays, infection-on-a-chip and in vivo mouse models to show that the compounds improve the recruitment, engulfment and killing of S. aureus by neutrophils. Furthermore, optimizing the formyl peptide sequence can enhance neutrophil activity through differential activation of formyl peptide receptors. Thus, we propose antibiotic-chemoattractants as an alternate approach for antibiotic development.