Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Synapse ; 67(12): 865-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23813456

RESUMO

Our previous and other studies have confirmed that a selective M1 and M3 receptor antagonist, Penehyclidine hydrochloride (PHC), has neuroprotection activity in cerebral ischemia. However, the precise mechanisms of protection of PHC are still elusive. In this study we analyzed PHC-mediated neuroprotection on a model of brain ischemia (oxygen and glucose deprivation), named postischemic LTP (i-LTP). We found that the activation of NMDA receptor was required for the induction of i-LTP. Compared with scopolamine, PHC could prevent it due to selectively blocking M1 receptor, not M2 receptor, to decrease NMDAR activation. Our findings further showed that the inhibition of SK2 channels occluded the prevention of PHC on NMDAR activation. Furthermore, we confirmed that PHC exerted its roles through directly disinhibition of SK2 channels by blocking M1 receptor and subsequent restricting PKC activation. Moreover, our studies further revealed the critical roles of SK2 channels in i-LTP. Thus, the mechanisms of PHC in brain protection may be involved in suppression of NMDAR by regulation of SK2 channels. Our results obtained in effects of PHC on i-LTP further provided a better understanding of the therapy strategy during stroke and identified potential therapeutic targets to prevent development of ischemia.


Assuntos
Isquemia Encefálica/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Quinuclidinas/farmacologia , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M3/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Bloqueadores dos Canais de Potássio/farmacologia , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Escopolamina/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores
2.
Psychiatry Res ; 243: 446-52, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27455425

RESUMO

Cognitive impairment is a common adverse effect of electroconvulsive therapy (ECT) during treatment for severe depression. Dexmedetomidine (DEX), a sedative-anesthetic drug, is used to treat post-ECT agitation. However, it is not known if DEX can protect against ECT-induced cognitive impairments. To address this, we used chronic unpredictable mild stress (CUMS) to establish a model of depression for ECT treatment. Our Morris water maze and sucrose preference test results suggest that DEX alleviates ECT-induced learning and memory impairments without altering the antidepressant efficacy of ECT. To further investigate the underlying mechanisms of DEX, hippocampal expression of NR2B, p-ERK/ERK, p-CREB/CREB, and BDNF were quantified by western blotting. These results show that DEX suppresses over-activation of NR2B and enhances phosphorylation of ERK1/2 in the hippocampus of ECT-treated depressed rats. Furthermore, DEX had no significant effect on ECT-induced increases in p-CREB and BDNF. Overall, our findings suggest that DEX ameliorates ECT-induced learning and memory impairments in depressed rats via the NR2B-ERK signaling cascade. Moreover, CREB/BDNF seems not appear to participate in the cognitive protective mechanisms of DEX during ECT treatment.


Assuntos
Transtorno Depressivo Maior/terapia , Dexmedetomidina/farmacologia , Eletrochoque/efeitos adversos , Hipnóticos e Sedativos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Hipocampo/metabolismo , Aprendizagem/efeitos dos fármacos , Masculino , Transtornos da Memória/etiologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
3.
Brain Res ; 1622: 308-20, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26168895

RESUMO

Increasing evidence indicates that dexmedetomidine (DEX), a selective α2-adrenergic receptor agonist, has a neuroprotective effect against cerebral injury. However, it remains unknown whether and how DEX functionally prevents the pathological form of synaptic plasticity caused by ischemia in the hippocampal CA1 neurons. To address this issue, we analyzed the role of DEX using a model of brain ischemia (oxygen and glucose deprivation, OGD) referred to as post-ischemic LTP (i-LTP). We found that DEX could reduce i-LTP by selectively activating α2 receptors. To clarify its detailed mechanisms, the presynaptic and postsynaptic roles of DEX were investigated. The activation of the α2 receptors of DEX decreased the frequency spontaneous mEPSCs, which exerted its presynaptic mechanisms. In addition, DEX also decreased the amplitude of mEPSCs and prevented the depolarization of postsynaptic membranes during OGD treatment, which exerted its postsynaptic mechanisms. More importantly, our results indicate that postsynaptic ß receptors, not α1 receptors, participated in i-LTP. Therefore, these results demonstrated that decreasing ß receptors activation by DEX-medicated pre- and post-synaptic α2 receptors activation is responsible for i-LTP. Because of the NMDARs required for i-LTP, we further examined the critical roles of postsynaptic ß receptors downstream PKA regulation of NMDA receptor-mediated EPSCs (NMDA EPSC). We clarified that it is attributable to the direct effect of DEX on NMDA EPSC as mediated by PKA inactivation. These findings suggest that DEX can protect neurons from functional damage caused by a relatively mild degree of transient cerebral ischemia, and this effect is mediated by both presynaptic reduction of NE and glutamate release and postsynaptic suppression of NMDAR activation by ß receptors and downstream PKA regulation.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Região CA1 Hipocampal/efeitos dos fármacos , Dexmedetomidina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sinapses/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Isquemia Encefálica/fisiopatologia , Região CA1 Hipocampal/fisiopatologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glucose/deficiência , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/fisiologia , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Norepinefrina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA