Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473950

RESUMO

Compensatory growth (CG) is a physiological response that accelerates growth following a period of nutrient limitation, with the potential to improve growth efficiency and meat quality in cattle. However, the underlying molecular mechanisms remain poorly understood. In this study, 60 Huaxi cattle were divided into one ad libitum feeding (ALF) group and two restricted feeding groups (75% restricted, RF75; 50% restricted, RF50) undergoing a short-term restriction period followed by evaluation of CG. Detailed comparisons of growth performance during the experimental period, as well as carcass and meat quality traits, were conducted, complemented by a comprehensive transcriptome analysis of the longissimus dorsi muscle using differential expression analysis, gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and weighted correlation network analysis (WGCNA). The results showed that irrespective of the restriction degree, the restricted animals exhibited CG, achieving final body weights comparable to the ALF group. Compensating animals showed differences in meat quality traits, such as pH, cooking loss, and fat content, compared to the ALF group. Transcriptomic analysis revealed 57 genes and 31 pathways differentially regulated during CG, covering immune response, acid-lipid metabolism, and protein synthesis. Notably, complement-coagulation-fibrinolytic system synergy was identified as potentially responsible for meat quality optimization in RF75. This study provides novel and valuable genetic insights into the regulatory mechanisms of CG in beef cattle.


Assuntos
Privação de Alimentos , Perfilação da Expressão Gênica , Bovinos , Animais , Privação de Alimentos/fisiologia , Carne , Culinária , Composição Corporal/fisiologia , Músculo Esquelético/fisiologia , Transcriptoma
2.
Animals (Basel) ; 14(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891742

RESUMO

Complex traits are widely considered to be the result of a compound regulation of genes, environmental factors, and genotype-by-environment interaction (G × E). The inclusion of G × E in genome-wide association analyses is essential to understand animal environmental adaptations and improve the efficiency of breeding decisions. Here, we systematically investigated the G × E of growth traits (including weaning weight, yearling weight, 18-month body weight, and 24-month body weight) with environmental factors (farm and temperature) using genome-wide genotype-by-environment interaction association studies (GWEIS) with a dataset of 1350 cattle. We validated the robust estimator's effectiveness in GWEIS and detected 29 independent interacting SNPs with a significance threshold of 1.67 × 10-6, indicating that these SNPs, which do not show main effects in traditional genome-wide association studies (GWAS), may have non-additive effects across genotypes but are obliterated by environmental means. The gene-based analysis using MAGMA identified three genes that overlapped with the GEWIS results exhibiting G × E, namely SMAD2, PALMD, and MECOM. Further, the results of functional exploration in gene-set analysis revealed the bio-mechanisms of how cattle growth responds to environmental changes, such as mitotic or cytokinesis, fatty acid ß-oxidation, neurotransmitter activity, gap junction, and keratan sulfate degradation. This study not only reveals novel genetic loci and underlying mechanisms influencing growth traits but also transforms our understanding of environmental adaptation in beef cattle, thereby paving the way for more targeted and efficient breeding strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA