Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 9888-9896, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546165

RESUMO

Second near-infrared (NIR-II) optical imaging technology has emerged as a powerful tool for diagnostic and image-guided surgery due to its higher imaging contrast. However, a general strategy for efficiently designing NIR-II organic molecules is still lacking, because NIR-II dyes are usually difficult to synthesize, which has impeded the rapid development of NIR-II bioprobes. Herein, based on the theoretical calculations on 62 multiaryl-pyrrole (MAP) systems with spectra ranging from the visible to the NIR-II region, a continuous red shift of the spectra toward the NIR-II region could be achieved by adjusting the type and site of substituents on the MAPs. Two descriptors (ΔEgs and µgs) were identified as exhibiting strong correlations with the maximum absorption/emission wavelengths, and the descriptors could be used to predict the emission spectrum in the NIR-II region only if ΔEgs ≤ 2.5 eV and µgs ≤ 22.55 D. The experimental absorption and emission spectra of ten MAPs fully confirmed the theoretical predictions, and biological imaging in vivo of newly designed MAP23-BBT showed high spatial resolution in the NIR-II region in deep tissue angiography. More importantly, both descriptors of ΔEgs and µgs have shown general applicability to most of the reported donor-acceptor-donor-type non-MAP NIR-II dyes. These results have broad implications for the efficient design of NIR-II dyes.

2.
Angew Chem Int Ed Engl ; 63(5): e202317431, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38081786

RESUMO

Organic near-infrared room temperature phosphorescence (RTP) materials offer remarkable advantages in bioimaging due to their characteristic time scales and background noise elimination. However, developing near-infrared RTP materials for deep tissue imaging still faces challenges since the small band gap may increase the non-radiative decay, resulting in weak emission and short phosphorescence lifetime. In this study, fused-ring pyrrole-based structures were employed as the guest molecules for the construction of long wavelength emissive RTP materials. Compared to the decrease of the singlet energy level, the triplet energy level showed a more effectively decrease with the increase of the conjugation of the substituent groups. Moreover, the sufficient conjugation of fused ring structures in the guest molecule suppresses the non-radiative decay of triplet excitons. Therefore, a near-infrared RTP material (764 nm) was achieved for deep penetration bioimaging. Tumor cell membrane is used to coat RTP nanoparticles (NPs) to avoid decreasing the RTP performance compared to traditional coating by amphiphilic surfactants. RTP NPs with tumor-targeting properties show favorable phosphorescent properties, superior stability, and excellent biocompatibility. These NPs are applied for time-resolved luminescence imaging to eliminate background interference with excellent tissue penetration. This study provides a practical solution to prepare long-wavelength and long-lifetime organic RTP materials and their applications in bioimaging.


Assuntos
Luminescência , Nanopartículas , Membrana Celular , Pirróis
3.
Chemistry ; 26(65): 14947-14953, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32602178

RESUMO

Increasing the quantum yield of near-infrared (NIR) emissive dyes is critical for biological applications because these fluorescent dyes generally show decreased emission efficiency under aqueous conditions. In this work, we designed and synthesized several multiarylpyrrole (MAP) derivatives, in which a furanylidene (FE) group at the 3-position of the pyrrole forms donor-π-acceptor molecules, MAP-FE, with a NIR emissive wavelength and aggregation-enhanced emission (AEE) features. Different alkyl chains of MAP-FEs linked to phenyl groups at the 2,5-position of the pyrrole ring resulted in different emissive wavelengths and quantum yields in aggregated states, such as powders or single crystals. Powder XRD data and single crystal analysis elucidated that the different lengths of alkyl chains had a significant impact on the regularity of MAP-FEs when they were forced to aggregate or precipitate, which affected the intermolecular interaction and the restriction degree of the rotating parts, which are essential components. Therefore, an increasing number of NIR dyes could be developed by this design strategy to produce efficient NIR dyes with AEE. Moreover, this method can provide general guidance for other related fields, such as organic solar cells and organic light-emitting materials, because they are all applied in the aggregated state.

4.
Nanoscale ; 14(38): 14064-14072, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36053244

RESUMO

Developing efficient photosensitizers (PSs) that can generate type I reactive oxygen species (ROS) under illumination is considered an effective way to improve photodynamic therapy (PDT) outcomes due to the hypoxic nature of the tumor environment, but also is very challenging. Herein, a new PS of the multiarylpyrrole (MAP) derivative with a typical donor-acceptor structure was synthesized to efficiently generate type I ROS by using an acceptor-shielding strategy in their aggregated state. The enhanced generation mechanism of type I ROS originated from its ultralong triplet lifetime and the narrow singlet-triplet energy gap of the MAP. More importantly, type I ROS can transform protumoral M2 macrophages (M2) into antitumoral M1 macrophages (M1), which showed synergistic immunotherapy in in vivo experiments. Therefore, introducing shielding groups into acceptors provides general guidance for developing efficient PSs in the aggregation state for clinical PDT.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Imunoterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA