Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Med Res Rev ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808959

RESUMO

5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.

2.
Chemphyschem ; 25(12): e202400074, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38517325

RESUMO

In the framework of the design, synthesis and testing of a library of copper complexes and nanostructured assemblies potentially endowed with antitumor and antiviral activity and useful for several applications, from drugs and related delivery systems to the development of biocidal nanomaterials, we present the detailed spectroscopic investigation of the molecular and electronic structure of copper-based coordination compounds and of a new conjugated system obtained by grafting Cu(I) complexes to gold nanorods. More in detail, the electronic and molecular structures of two Cu complexes and one AuNRs/Cu-complex adduct were investigated by X-ray photoelectron spectroscopy (XPS), synchrotron-induced XPS (SR-XPS) and near edge X-ray absorption spectroscopy (NEXAFS) in solid state, and the local structure around copper ion was assessed by X-ray absorption spectroscopy (XAS) both in solid state and water solution for the AuNRs/Cu-complex nanoparticles. The proposed multi-technique approach allowed to properly define the coordination geometry around the copper ion, as well as to ascertain the molecular structures of the coordination compounds, their stability and modifications upon interaction with gold nanoparticles, by comparing solid state and liquid phase data.

3.
Med Res Rev ; 43(5): 1607-1667, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37036052

RESUMO

Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.


Assuntos
Neuropeptídeos , Humanos , Animais , Receptores de Orexina/metabolismo , Ligantes , Orexinas , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Receptores Acoplados a Proteínas G , Sistema Nervoso Central , Receptores de Neuropeptídeos/metabolismo , Mamíferos/metabolismo
4.
Pharmacol Res ; 195: 106875, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517560

RESUMO

Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.


Assuntos
Bulimia , Neuropeptídeos , Hormônios Peptídicos , Animais , Comportamento Alimentar , Neuropeptídeos/uso terapêutico , Obesidade/tratamento farmacológico , Bulimia/tratamento farmacológico
5.
Pharmacol Res ; 185: 106521, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272641

RESUMO

The melanocortinergic neural circuit, known for its influence on energy expenditure and feeding behavior, also plays a role in stress and stress-induced psychiatric disorders, including anxiety and depression. The major contribution is given by the melanocortin-4 receptor (MC4R) subtype, highly expressed in brain regions involved in the control of stress responses. Furthermore, the MC4R appears to profoundly affect the activity of the hypothalamic-pituitary-adrenal (HPA) axis, and it has been also highlighted a functional and anatomical interaction with the corticotropin-releasing factor (CRF), an important mediator of stress and stress-related behaviors. The MC4R agonists seem to exacerbate stress-inducing anxiety- and depressive-like behavior, while MC4R antagonists have been demonstrated to mitigate such disorders, as shown in several preclinical behavioral tests. The evidence collected in the present review suggests that the melanocortin system, through the MC4R, could possibly modulate behavioral responses to stress, suggesting the use of MC4R antagonists as a possible novel treatment for anxiety and depression induced by stress.


Assuntos
Melanocortinas , Sistema Hipófise-Suprarrenal , Humanos , Ansiedade/tratamento farmacológico , Sistema Hipotálamo-Hipofisário , Estresse Fisiológico
6.
Inorg Chem ; 61(12): 4919-4937, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35285628

RESUMO

Bis(pyrazol-1-yl)- and bis(3,5-dimethylpyrazol-1-yl)-acetates were conjugated with the 2-hydroxyethylester and 2-aminoethylamide derivatives of the antineoplastic drug lonidamine to prepare Cu(I) and Cu(II) complexes that might act through synergistic mechanisms of action due to the presence of lonidamine and copper in the same chemical entity. Synchrotron radiation-based complementary techniques [X-ray photorlectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS)] were used to characterize the electronic and molecular structures of the complexes and the local structure around the copper ion (XAFS) in selected complexes. All complexes showed significant antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human tumor cell lines, and were able to overcome oxaliplatin and multidrug resistance. Noticeably, these Cu complexes appeared much more effective than cisplatin against 3D spheroids of pancreatic PSN-1 cancer cells; among these, PPh3-containing Cu(I) complex 15 appeared to be the most promising derivative. Mechanistic studies revealed that 15 induced cancer cell death by means of an apoptosis-alternative cell death.


Assuntos
Antineoplásicos , Complexos de Coordenação , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Cristalografia por Raios X , Humanos , Indazóis , Ligantes , Estrutura Molecular
7.
J Cell Physiol ; 236(5): 3740-3751, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33078406

RESUMO

Cancer chemotherapy can significantly impair the bone formation and cause myelosuppression; however, their recovery potentials and mechanisms remain unclear. This study investigated the roles of the ß-catenin signaling pathway in bone and bone marrow recovery potentials in rats treated with antimetabolite methotrexate (MTX) (five once-daily injections, 0.75 mg/kg) with/without ß-catenin inhibitor indocyanine green (ICG)-001 (oral, 200 mg/kg/day). ICG alone reduced trabecular bone volume and bone marrow cellularity. In MTX-treated rats, ICG suppressed bone volume recovery on Day 11 after the first MTX injection. ICG exacerbated MTX-induced decreases on Day 9 osteoblast numbers on bone surfaces, their formation in vitro from bone marrow stromal cells (osteogenic differentiation/mineralization), as well as expression of osteogenesis-related markers Runx2, Osx, and OCN in bone, and it suppressed their subsequent recoveries on Day 11. On the other hand, ICG did not affect MTX-induced increased osteoclast density and the level of the osteoclastogenic signal (RANKL/OPG expression ratio) in bone, suggesting that ICG inhibition of ß-catenin does nothing to abate the increased bone resorption induced by MTX. ICG also attenuated bone marrow cellularity recovery on Day 11, which was associated with the suppressed recovery of CD34+ or c-Kit+  hematopoietic progenitor cell contents. Thus, ß-catenin signaling is important for osteogenesis and hematopoiesis recoveries following MTX chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Hematopoese , Metotrexato/uso terapêutico , Osteogênese , Transdução de Sinais , beta Catenina/metabolismo , Animais , Antineoplásicos/farmacologia , Medula Óssea/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Metotrexato/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteoprotegerina/metabolismo , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia , Ligante RANK/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
8.
Pharmacol Res ; 172: 105847, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34438062

RESUMO

The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.


Assuntos
Aciltransferases/fisiologia , Comportamento Alimentar , Grelina/fisiologia , Animais , Bulimia , Ingestão de Alimentos , Humanos , Motivação , Recompensa
9.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283777

RESUMO

In the present article, copper(I) complexes of bis(pyrazol-1-yl) carboxylic acid (LH), bis(3,5-dimethylpyrazol-1-yl) carboxylic acid (L2H), and bis(pyrazol-1-yl) acetates conjugated with an N-methyl-d-aspartate (NMDA) receptor antagonist (LNMDA or L2NMDA) and phosphane ligands (triphenylphosphine or 1,3,5-triaza-7-phosphaadamantane) were synthesized. The selection of an NMDA antagonist for the coupling with LH and L2H was suggested by the observation that NMDA receptors are expressed and play a role in different types of cancer models. All the new complexes showed a significant antitumor activity on a panel of human tumor cell lines of different histology, with cisplatin-sensitive, cisplatin-resistant, or multi-drug-resistant phenotype. Their half maximal inhibitory concentration (IC50) values were in the low- and sub-micromolar range and, in general, significantly lower than that of cisplatin. Interestingly, the fact that all the complexes proved to be significantly more active than cisplatin even in three-dimensional (3D) spheroids of H157 and BxPC3 cancer cells increased the relevance of the in vitro results. Finally, morphological analysis revealed that the most representative complex 8 induced a massive swelling of the endoplasmic reticulum (ER) membrane, which is a clear sign of ER stress.


Assuntos
Acetatos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Pirazóis/química , Receptores de N-Metil-D-Aspartato/agonistas , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Células Cultivadas , Complexos de Coordenação/síntese química , Humanos , Ligantes , Estrutura Molecular
10.
Bioorg Med Chem ; 23(17): 5725-33, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26233797

RESUMO

The canonical Wnt signaling pathway plays a fundamental role in embryonic as well as in adult development. Consequently, dysregulation of the pathway has been linked to a wide spectrum of pathological conditions. In a program aimed at the identification of small molecule inhibitors of the canonical Wnt pathway we identified a series of 2-aminopyrimidine derivatives which specifically inhibited the pathway with minimal or no sign of cellular toxicity. The hit molecules 1 and 2 showed promising inhibitory activity with IC50 values of approximately 10 µM, but low solubility and metabolic stability. During the early stage of the hit series exploration, the pyrimidine core was variously decorated to obtain active compounds with a better physico-chemical profile. In particular, compound 13 showed Wnt inhibition activity comparable to hit molecules 1 and 2, with improved physico-chemical properties. Therefore, this series of compounds may be considered a promising starting point for the design of novel small molecule inhibitors of the canonical Wnt pathway.


Assuntos
Pirimidinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Humanos , Estrutura Molecular , Pirimidinas/metabolismo , Relação Estrutura-Atividade , Via de Sinalização Wnt/genética
11.
BMC Cancer ; 14: 921, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25481381

RESUMO

BACKGROUND: There is evidence that calcium (Ca(2+)) increases the proliferation of human advanced prostate cancer (PCa) cells but the ion channels involved are not fully understood. Here, we investigated the correlation between alpha(1D)-adrenergic receptor (alpha(1D)-AR) and the transient receptor potential vanilloid type 1 (TRPV1) expression levels in human PCa tissues and evaluated the ability of alpha(1D)-AR to cross-talk with TRPV1 in PCa cell lines. METHODS: The expression of alpha1D-AR and TRPV1 was examined in human PCa tissues by quantitative RT-PCR and in PCa cell lines (DU145, PC3 and LNCaP) by cytofluorimetry. Moreover, alpha(1D)-AR and TRPV1 colocalization was investigated by confocal microscopy in PCa cell lines and by fluorescence microscopy in benign prostate hyperplasia (BPH) and PCa tissues. Cell proliferation was assessed by BrdU incorporation. Alpha(1D)-AR/TRPV1 knockdown was obtained using siRNA transfection. Signalling pathways were evaluated by measurement of extracellular acidification rate, Ca(2+) flux, IP3 production, western blot and MTT assay. RESULTS: The levels of the alpha(1D)-AR and TRPV1 mRNAs are increased in PCa compared to BPH specimens and a high correlation between alpha(1D)-AR and TRPV1 expression levels was found. Moreover, alpha(1D)-AR and TRPV1 are co-expressed in prostate cancer cell lines and specimens. Noradrenaline (NA) induced an alpha(1D)-AR- and TRPV1-dependent protons release and Ca(2+) flux in PC3 cell lines; NA by triggering the activation of phospholipase C (PLC), protein kinase C (PKC) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways stimulated PC3 cell proliferation, that was completely inhibited by clopenphendioxan (WS433) and capsazepine (CPZ) combination or by alpha(1D)-AR/TRPV1 double knockdown. CONCLUSIONS: We demonstrate a cross-talk between alpha1D-AR and TRPV1, that is involved in the control of PC3 cell proliferation. These data strongly support for a putative novel pharmacological approach in the treatment of PCa by targeting both alpha1D-AR and TRPV1 channels.


Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Expressão Gênica , Humanos , Masculino , Norepinefrina/farmacologia , Neoplasias da Próstata/patologia , Ligação Proteica , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos
12.
Bioorg Med Chem Lett ; 24(15): 3255-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24980056

RESUMO

The methyl group in cis stereochemical relationship with the basic chain of all pentatomic cyclic analogues of ACh is crucial for the agonist activity at mAChR. Among these only cevimeline (1) is employed in the treatment of xerostomia associated with Sjögren's syndrome. Here we demonstrated that, unlike 1,3-dioxolane derivatives, in the 1,4-dioxane series the methyl group is not essential for the activation of mAChR subtypes. Docking studies, using the crystal structures of human M2 and rat M3 receptors, demonstrated that the 5-methylene group of the 1,4-dioxane nucleus of compound 10 occupies the same lipophilic pocket as the methyl group of the 1,3-dioxolane 4.


Assuntos
Dioxanos/farmacologia , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M3/agonistas , Animais , Sítios de Ligação/efeitos dos fármacos , Dioxanos/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Conformação Molecular , Agonistas Muscarínicos/química , Ratos , Relação Estrutura-Atividade
13.
Int J Pharm ; 661: 124388, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925239

RESUMO

One interesting field of research in the view of developing novel surfactants for pharmaceutical and cosmetic applications is the design of amphiphiles showing further bioactive properties in addition to those commonly displayed by surface-active compounds. We propose here the chemical synthesis, and characterization of 1-o-tolyl alkyl biguanide derivatives, having different lengths of the hydrocarbon chain (C3, C6, and C10), and showing surface active and antibacterial/disinfectant activities toward both Gram-positive and Gram-negative bacteria. Both surface active properties in terms of critical micelle concentration (CMC) and surface tension at CMC (γCMC), as well as the antimicrobial activity in terms of minimum inhibitory concentrations (MICs), were strongly dependent on the length of the hydrocarbon chain. Particularly, the C6 and C10 derivatives have a good ability to decrease surface tension (γCMC <40 mN/m) at low concentrations (CMC < 12 mM) and a satisfactory antibacterial effect (MIC values between 0.230 and 0.012 mM against S. aureus strains and between 0.910 and 0.190 against P.aeruginosa strains). Interestingly, these compounds showed a disinfectant activity at the tested concentrations that was comparable to that of the reference compound chlorhexidine digluconate. All these results support the possible use of these amphiphilic compounds as antibacterial agents and disinfectants in pharmaceutical or cosmetic formulations.

14.
J Med Chem ; 67(11): 9662-9685, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38831692

RESUMO

The new ligand L2Ad, obtained by conjugating the bifunctional species bis(3,5-dimethylpyrazol-1-yl)-acetate and the drug amantadine, was used as a chelator for the synthesis of new Cu complexes 1-5. Their structures were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and by combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modeling. The structure of complex 3 was determined by single-crystal X-ray diffraction analysis. Tested on U87, T98, and U251 glioma cells, Cu(II) complex 3 and Cu(I) complex 5 decreased cell viability with IC50 values significantly lower than cisplatin, affecting cell growth, proliferation, and death. Their effects were prevented by treatment with the Cu chelator tetrathiomolybdate, suggesting the involvement of copper in their cytotoxic activity. Both complexes were able to increase ROS production, leading to DNA damage and death. Interestingly, nontoxic doses of 3 or 5 enhanced the chemosensitivity to Temozolomide.


Assuntos
Adamantano , Antineoplásicos , Complexos de Coordenação , Cobre , Glioblastoma , Humanos , Cobre/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Ligantes , Adamantano/farmacologia , Adamantano/química , Adamantano/síntese química , Adamantano/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Espécies Reativas de Oxigênio/metabolismo , Estrutura Molecular , Quelantes/química , Quelantes/farmacologia , Quelantes/síntese química , Relação Estrutura-Atividade , Acetatos/química , Acetatos/farmacologia , Acetatos/síntese química
15.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37259338

RESUMO

The prevention of nicotinamide adenine dinucleotide (NAD) biosynthesis is considered an attractive therapeutic approach against cancer, considering that tumor cells are characterized by an increased need for NAD to fuel their reprogrammed metabolism. On the other hand, the decline of NAD is a hallmark of some pathological conditions, including neurodegeneration and metabolic diseases, and boosting NAD biosynthesis has proven to be of therapeutic relevance. Therefore, targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD biosynthesis from nicotinamide (NAM) and nicotinic acid (NA), respectively, is considered a promising strategy to modulate intracellular NAD pool. While potent NAMPT inhibitors and activators have been developed, the search for NAPRT modulators is still in its infancy. In this work, we report on the identification of a new class of NAPRT modulators bearing the 1,2-dimethylbenzimidazole scaffold properly substituted in position 5. In particular, compounds 24, 31, and 32 emerged as the first NAPRT activators reported so far, while 18 behaved as a noncompetitive inhibitor toward NA (Ki = 338 µM) and a mixed inhibitor toward phosphoribosyl pyrophosphate (PRPP) (Ki = 134 µM). From in vitro pharmacokinetic studies, compound 18 showed an overall good ADME profile. To rationalize the obtained results, docking studies were performed on the NAPRT structure. Moreover, a preliminary pharmacophore model was built to shed light on the shift from inhibitors to activators.

16.
Bioorg Med Chem ; 20(7): 2259-65, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22370341

RESUMO

Aim of the present study was to obtain novel α(2)-adrenoreceptor (α(2)-AR) antagonists, possibly endowed with subtype-selectivity. Therefore, inspired by the non subtype-selective α(2)-AR antagonist idazoxan, we designed 1,4-dioxane derivatives bearing an aromatic area in position 5 or 6 and the imidazoline nucleus in position 2. Among the novel molecules 1-6, compound 2, with a trans stereochemical relationship between 5-phenyl and 2-imidazoline groups, was able to antagonize the sole α(2A)-subtype. Moreover, 2 showed an affinity at I(2)-imidazoline binding sites (I(2)-IBS) comparable to that at α(2A)-AR. In in vivo studies 2 strongly increased morphine analgesia. This interesting behaviour appeared to be induced by the favourable involvement of α(2A)-AR antagonism in the I(2)-IBS-mediated morphine analgesia enhancement.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/química , Imidazolinas/química , Receptores Adrenérgicos alfa 2/química , Antagonistas de Receptores Adrenérgicos alfa 2/síntese química , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Sítios de Ligação , Humanos , Idazoxano/química , Masculino , Camundongos , Morfina/farmacologia , Medição da Dor/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Estereoisomerismo
17.
Bioorg Med Chem ; 20(6): 2082-90, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22341244

RESUMO

We recently reported that the α(2)-adrenoreceptor (AR) ligand allyphenyline (9) significantly enhanced morphine analgesia (due to its α(2C)-AR agonism), was devoid of sedative side effects (due to its α(2A)-AR antagonism), prevented and reversed morphine tolerance and dependence. To highlight the molecular characteristics compatible with this behaviour and to obtain novel agents potentially useful in chronic pain and opioid addiction management, the allyl group of 9 was replaced by substituents of moderate steric bulk (MR) and positive or negative lipophilic (π) and electronic (σ) contributions in all the possible combinations. Effective novel α(2C)-agonists/α(2A)-antagonists (2, 3, 10, 12, and 17) were obtained. This study also demonstrated that contradictory combinations of the physicochemical parameters were similarly able to induce the α(2A)-activation. Since we had previously observed that the absolute configuration affected only the potency, but not the functional profile of the ligands, we hypothesized that the α(2A)-activation was governed by a ligand preferred conformation. From a structural overlay investigation it emerged that an extended conformation appeared to be associated with dual α(2C)-agonism/α(2A)-antagonism, whereas a folded conformation associated with α(2C)-/α(2A)-agonism.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/química , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/química , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Compostos Alílicos/química , Compostos Alílicos/farmacologia , Imidazolinas/química , Imidazolinas/farmacologia , Receptores Adrenérgicos alfa 2/metabolismo , Animais , Células CHO , Cricetinae , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular
18.
J Med Chem ; 65(4): 3098-3118, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35157454

RESUMO

Ghrelin is an octanoylated peptide acting by the activation of the growth hormone secretagogue receptor, namely, GHS-R1a. The involvement of ghrelin in several physiological processes, including stimulation of food intake, gastric emptying, body energy balance, glucose homeostasis, reduction of insulin secretion, and lipogenesis validates the considerable interest in GHS-R1a as a promising target for the treatment of numerous disorders. Over the years, several GHS-R1a ligands have been identified and some of them have been extensively studied in clinical trials. The recently resolved structures of GHS-R1a bound to ghrelin or potent ligands have provided useful information for the design of new GHS-R1a drugs. This perspective is focused on the development of recent nonpeptide small molecules acting as GHS-R1a agonists, antagonists, and inverse agonists, bearing classical or new molecular scaffolds, as well as on radiolabeled GHS-R1a ligands developed for imaging. Moreover, the pharmacological effects of the most studied ligands have been discussed.


Assuntos
Desenho de Fármacos , Grelina/agonistas , Grelina/antagonistas & inibidores , Receptores de Grelina/agonistas , Receptores de Grelina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Animais , Grelina/genética , Homeostase , Humanos , Ligantes , Receptores de Grelina/genética
19.
J Med Chem ; 65(18): 12124-12139, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36098685

RESUMO

To better understand the role of dopamine D4 receptor (D4R) in glioblastoma (GBM), in the present paper, new ligands endowed with high affinity and selectivity for D4R were discovered starting from the brain penetrant and D4R selective lead compound 1-(3-(4-phenylpiperazin-1-yl)propyl)-3,4-dihydroquinolin-2(1H)-one (6). In particular, the D4R antagonist 24, showing the highest affinity and selectivity over D2R and D3R within the series (D2/D4 = 8318, D3/D4 = 3715), and the biased ligand 29, partially activating D4R Gi-/Go-protein and blocking ß-arrestin recruitment, emerged as the most interesting compounds. These compounds, evaluated for their GBM antitumor activity, induced a decreased viability of GBM cell lines and primary GBM stem cells (GSC#83), with the maximal efficacy being reached at a concentration of 10 µM. Interestingly, the treatment with both compounds 24 and 29 induced an increased effect in reducing the cell viability with respect to temozolomide, which is the first-choice chemotherapeutic drug in GBM.


Assuntos
Antagonistas de Dopamina , Glioblastoma , Receptores de Dopamina D4 , Antagonistas de Dopamina/farmacologia , Antagonistas de Dopamina/uso terapêutico , Glioblastoma/tratamento farmacológico , Humanos , Ligantes , Temozolomida , beta-Arrestinas/metabolismo
20.
Eur J Med Chem ; 212: 113141, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33422983

RESUMO

Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or ß-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.


Assuntos
Antagonistas de Dopamina/farmacologia , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Receptores de Dopamina D4/antagonistas & inibidores , Transtornos Relacionados ao Uso de Álcool/tratamento farmacológico , Animais , Disfunção Cognitiva/tratamento farmacológico , Antagonistas de Dopamina/síntese química , Antagonistas de Dopamina/química , Humanos , Ligantes , Doença de Parkinson/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA