Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 178(1): 242-260.e29, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31155234

RESUMO

Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.


Assuntos
Miocárdio/metabolismo , Biossíntese de Proteínas , Adolescente , Adulto , Idoso , Animais , Códon/genética , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fases de Leitura Aberta/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ribossomos/genética , Ribossomos/metabolismo , Adulto Jovem
2.
Am J Hum Genet ; 108(6): 1083-1094, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34022131

RESUMO

Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5' untranslated regions (5' UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5' UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5' UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene.


Assuntos
Regiões 5' não Traduzidas , Deficiências do Desenvolvimento/etiologia , Predisposição Genética para Doença , Mutação com Perda de Função , Criança , Estudos de Coortes , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/patologia , Humanos , Fatores de Transcrição MEF2/genética , Sequenciamento do Exoma
3.
Circulation ; 140(11): 937-951, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284728

RESUMO

BACKGROUND: Fibrosis is a common pathology in many cardiac disorders and is driven by the activation of resident fibroblasts. The global posttranscriptional mechanisms underlying fibroblast-to-myofibroblast conversion in the heart have not been explored. METHODS: Genome-wide changes of RNA transcription and translation during human cardiac fibroblast activation were monitored with RNA sequencing and ribosome profiling. We then used RNA-binding protein-based analyses to identify translational regulators of fibrogenic genes. The integration with cardiac ribosome occupancy levels of 30 dilated cardiomyopathy patients demonstrates that these posttranscriptional mechanisms are also active in the diseased fibrotic human heart. RESULTS: We generated nucleotide-resolution translatome data during the transforming growth factor ß1-driven cellular transition of human cardiac fibroblasts to myofibroblasts. This identified dynamic changes of RNA transcription and translation at several time points during the fibrotic response, revealing transient and early-responder genes. Remarkably, about one-third of all changes in gene expression in activated fibroblasts are subject to translational regulation, and dynamic variation in ribosome occupancy affects protein abundance independent of RNA levels. Targets of RNA-binding proteins were strongly enriched in posttranscriptionally regulated genes, suggesting genes such as MBNL2 can act as translational activators or repressors. Ribosome occupancy in the hearts of patients with dilated cardiomyopathy suggested the same posttranscriptional regulatory network was underlying cardiac fibrosis. Key network hubs include RNA-binding proteins such as Pumilio RNA binding family member 2 (PUM2) and Quaking (QKI) that work in concert to regulate the translation of target transcripts in human diseased hearts. Furthermore, silencing of both PUM2 and QKI inhibits the transition of fibroblasts toward profibrotic myofibroblasts in response to transforming growth factor ß1. CONCLUSIONS: We reveal widespread translational effects of transforming growth factor ß1 and define novel posttranscriptional regulatory networks that control the fibroblast-to-myofibroblast transition. These networks are active in human heart disease, and silencing of hub genes limits fibroblast activation. Our findings show the central importance of translational control in fibrosis and highlight novel pathogenic mechanisms in heart failure.


Assuntos
Cardiopatias/genética , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Biossíntese de Proteínas/genética , Proteínas de Ligação a RNA/genética , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Perfilação da Expressão Gênica/métodos , Cardiopatias/patologia , Humanos , Análise de Sequência de RNA/métodos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
4.
JMIR Nurs ; 6: e44630, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279054

RESUMO

BACKGROUND: Community-based management by heart failure specialist nurses (HFSNs) is key to improving self-care in heart failure with reduced ejection fraction. Remote monitoring (RM) can aid nurse-led management, but in the literature, user feedback evaluation is skewed in favor of the patient rather than nursing user experience. Furthermore, the ways in which different groups use the same RM platform at the same time are rarely directly compared in the literature. We present a balanced semantic analysis of user feedback from patient and nurse perspectives of Luscii, a smartphone-based RM strategy combining self-measurement of vital signs, instant messaging, and e-learning. OBJECTIVE: This study aims to (1) evaluate how patients and nurses use this type of RM (usage type), (2) evaluate patients' and nurses' user feedback on this type of RM (user experience), and (3) directly compare the usage type and user experience of patients and nurses using the same type of RM platform at the same time. METHODS: We performed a retrospective usage type and user experience evaluation of the RM platform from the perspective of both patients with heart failure with reduced ejection fraction and the HFSNs using the platform to manage them. We conducted semantic analysis of written patient feedback provided via the platform and a focus group of 6 HFSNs. Additionally, as an indirect measure of tablet adherence, self-measured vital signs (blood pressure, heart rate, and body mass) were extracted from the RM platform at onboarding and 3 months later. Paired 2-tailed t tests were used to evaluate differences between mean scores across the 2 timepoints. RESULTS: A total of 79 patients (mean age 62 years; 35%, 28/79 female) were included. Semantic analysis of usage type revealed extensive, bidirectional information exchange between patients and HFSNs using the platform. Semantic analysis of user experience demonstrates a range of positive and negative perspectives. Positive impacts included increased patient engagement, convenience for both user groups, and continuity of care. Negative impacts included information overload for patients and increased workload for nurses. After the patients used the platform for 3 months, they showed significant reductions in heart rate (P=.004) and blood pressure (P=.008) but not body mass (P=.97) compared with onboarding. CONCLUSIONS: Smartphone-based RM with messaging and e-learning facilitates bilateral information sharing between patients and nurses on a range of topics. Patient and nurse user experience is largely positive and symmetrical, but there are possible negative impacts on patient attention and nurse workload. We recommend RM providers involve patient and nurse users in platform development, including recognition of RM usage in nursing job plans.

5.
JMIR Cardio ; 7: e45611, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351921

RESUMO

BACKGROUND: Despite effective therapies, the economic burden of heart failure with reduced ejection fraction (HFrEF) is driven by frequent hospitalizations. Treatment optimization and admission avoidance rely on frequent symptom reviews and monitoring of vital signs. Remote monitoring (RM) aims to prevent admissions by facilitating early intervention, but the impact of noninvasive, smartphone-based RM of vital signs on secondary health care use and costs in the months after a new diagnosis of HFrEF is unknown. OBJECTIVE: The purpose of this study is to conduct a secondary care health use and health-economic evaluation for patients with HFrEF using smartphone-based noninvasive RM and compare it with matched controls receiving usual care without RM. METHODS: We conducted a retrospective study of 2 cohorts of newly diagnosed HFrEF patients, matched 1:1 for demographics, socioeconomic status, comorbidities, and HFrEF severity. They are (1) the RM group, with patients using the RM platform for >3 months and (2) the control group, with patients referred before RM was available who received usual heart failure care without RM. Emergency department (ED) attendance, hospital admissions, outpatient use, and the associated costs of this secondary care activity were extracted from the Discover data set for a 3-month period after diagnosis. Platform costs were added for the RM group. Secondary health care use and costs were analyzed using Kaplan-Meier event analysis and Cox proportional hazards modeling. RESULTS: A total of 146 patients (mean age 63 years; 42/146, 29% female) were included (73 in each group). The groups were well-matched for all baseline characteristics except hypertension (P=.03). RM was associated with a lower hazard of ED attendance (hazard ratio [HR] 0.43; P=.02) and unplanned admissions (HR 0.26; P=.02). There were no differences in elective admissions (HR 1.03, P=.96) or outpatient use (HR 1.40; P=.18) between the 2 groups. These differences were sustained by a univariate model controlling for hypertension. Over a 3-month period, secondary health care costs were approximately 4-fold lower in the RM group than the control group, despite the additional cost of RM itself (mean cost per patient GBP £465, US $581 vs GBP £1850, US $2313, respectively; P=.04). CONCLUSIONS: This retrospective cohort study shows that smartphone-based RM of vital signs is feasible for HFrEF. This type of RM was associated with an approximately 2-fold reduction in ED attendance and a 4-fold reduction in emergency admissions over just 3 months after a new diagnosis with HFrEF. Costs were significantly lower in the RM group without increasing outpatient demand. This type of RM could be adjunctive to standard care to reduce admissions, enabling other resources to help patients unable to use RM.

6.
Nat Commun ; 11(1): 2523, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461616

RESUMO

Upstream open reading frames (uORFs) are tissue-specific cis-regulators of protein translation. Isolated reports have shown that variants that create or disrupt uORFs can cause disease. Here, in a systematic genome-wide study using 15,708 whole genome sequences, we show that variants that create new upstream start codons, and variants disrupting stop sites of existing uORFs, are under strong negative selection. This selection signal is significantly stronger for variants arising upstream of genes intolerant to loss-of-function variants. Furthermore, variants creating uORFs that overlap the coding sequence show signals of selection equivalent to coding missense variants. Finally, we identify specific genes where modification of uORFs likely represents an important disease mechanism, and report a novel uORF frameshift variant upstream of NF2 in neurofibromatosis. Our results highlight uORF-perturbing variants as an under-recognised functional class that contribute to penetrant human disease, and demonstrate the power of large-scale population sequencing data in studying non-coding variant classes.


Assuntos
Regiões 5' não Traduzidas , Variação Genética , Mutação com Perda de Função , Proteínas/genética , Sequência de Bases , Genoma Humano , Humanos , Fases de Leitura Aberta
7.
Nat Med ; 26(6): 869-877, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32461697

RESUMO

Human genetic variants predicted to cause loss-of-function of protein-coding genes (pLoF variants) provide natural in vivo models of human gene inactivation and can be valuable indicators of gene function and the potential toxicity of therapeutic inhibitors targeting these genes1,2. Gain-of-kinase-function variants in LRRK2 are known to significantly increase the risk of Parkinson's disease3,4, suggesting that inhibition of LRRK2 kinase activity is a promising therapeutic strategy. While preclinical studies in model organisms have raised some on-target toxicity concerns5-8, the biological consequences of LRRK2 inhibition have not been well characterized in humans. Here, we systematically analyze pLoF variants in LRRK2 observed across 141,456 individuals sequenced in the Genome Aggregation Database (gnomAD)9, 49,960 exome-sequenced individuals from the UK Biobank and over 4 million participants in the 23andMe genotyped dataset. After stringent variant curation, we identify 1,455 individuals with high-confidence pLoF variants in LRRK2. Experimental validation of three variants, combined with previous work10, confirmed reduced protein levels in 82.5% of our cohort. We show that heterozygous pLoF variants in LRRK2 reduce LRRK2 protein levels but that these are not strongly associated with any specific phenotype or disease state. Our results demonstrate the value of large-scale genomic databases and phenotyping of human loss-of-function carriers for target validation in drug discovery.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação com Perda de Função/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Mutação com Ganho de Função/genética , Heterozigoto , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Longevidade/genética , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Fenótipo
10.
Curr Opin Pharmacol ; 12(5): 608-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22858242

RESUMO

The zebrafish has attracted interest from both the scientific and general press owing to its transition from a model of developmental biology to a tool for biomedical and preclinical studies. In this brief review, we summarise the advantages of a unique model organism and outline some of its recent contributions to the understanding of vascular development and remodelling.


Assuntos
Crescimento e Desenvolvimento/fisiologia , Peixe-Zebra/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA