Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Hum Mol Genet ; 31(23): 3945-3966, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35848942

RESUMO

Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudo de Associação Genômica Ampla , Haplótipos , Polimorfismo Genético
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876746

RESUMO

Humans harbor diverse communities of microorganisms, the majority of which are bacteria in the gastrointestinal tract. These gut bacterial communities in turn host diverse bacteriophage (hereafter phage) communities that have a major impact on their structure, function, and, ultimately, human health. However, the evolutionary and ecological origins of these human-associated phage communities are poorly understood. To address this question, we examined fecal phageomes of 23 wild nonhuman primate taxa, including multiple representatives of all the major primate radiations. We find relatives of the majority of human-associated phages in wild primates. Primate taxa have distinct phageome compositions that exhibit a clear phylosymbiotic signal, and phage-superhost codivergence is often detected for individual phages. Within species, neighboring social groups harbor compositionally and evolutionarily distinct phageomes, which are structured by superhost social behavior. Captive nonhuman primate phageome composition is intermediate between that of their wild counterparts and humans. Phage phylogenies reveal replacement of wild great ape-associated phages with human-associated ones in captivity and, surprisingly, show no signal for the persistence of wild-associated phages in captivity. Together, our results suggest that potentially labile primate-phage associations have persisted across millions of years of evolution. Across primates, these phylosymbiotic and sometimes codiverging phage communities are shaped by transmission between groupmates through grooming and are dramatically modified when primates are moved into captivity.


Assuntos
Bacteriófagos/patogenicidade , Microbioma Gastrointestinal , Hominidae/virologia , Viroma , Animais , Bacteriófagos/genética , Meio Ambiente , Evolução Molecular , Hominidae/classificação , Hominidae/genética , Hominidae/microbiologia , Filogenia , Comportamento Social
3.
Gut ; 72(7): 1355-1369, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36631247

RESUMO

OBJECTIVE: In acute pancreatitis (AP), bacterial translocation and subsequent infection of pancreatic necrosis are the main risk factors for severe disease and late death. Understanding how immunological host defence mechanisms fail to protect the intestinal barrier is of great importance in reducing the mortality risk of the disease. Here, we studied the role of the Treg/Th17 balance for maintaining the intestinal barrier function in a mouse model of severe AP. DESIGN: AP was induced by partial duct ligation in C57Bl/6 or DEREG mice, in which regulatory T-cells (Treg) were depleted by intraperitoneal injection of diphtheria toxin. By flow cytometry, functional suppression assays and transcriptional profiling we analysed Treg activation and characterised T-cells of the lamina propria as well as intraepithelial lymphocytes (IELs) regarding their activation and differentiation. Microbiota composition was examined in intestinal samples as well as in murine and human pancreatic necrosis by 16S rRNA gene sequencing. RESULTS: The prophylactic Treg-depletion enhanced the proinflammatory response in an experimental mouse model of AP but stabilised the intestinal immunological barrier function of Th17 cells and CD8+/γδTCR+ IELs. Treg depleted animals developed less bacterial translocation to the pancreas. Duodenal overgrowth of the facultative pathogenic taxa Escherichia/Shigella which associates with severe disease and infected necrosis was diminished in Treg depleted animals. CONCLUSION: Tregs play a crucial role in the counterbalance against systemic inflammatory response syndrome. In AP, Treg-activation disturbs the duodenal barrier function and permits translocation of commensal bacteria into pancreatic necrosis. Targeting Tregs in AP may help to ameliorate the disease course.


Assuntos
Pancreatite Necrosante Aguda , Linfócitos T Reguladores , Camundongos , Humanos , Animais , Doença Aguda , Translocação Bacteriana , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL
4.
Bioinformatics ; 38(24): 5430-5433, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36264141

RESUMO

MOTIVATION: Recovery of metagenome-assembled genomes (MAGs) from shotgun metagenomic data is an important task for the comprehensive analysis of microbial communities from variable sources. Single binning tools differ in their ability to leverage specific aspects in MAG reconstruction, the use of ensemble binning refinement tools is often time consuming and computational demand increases with community complexity. We introduce MAGScoT, a fast, lightweight and accurate implementation for the reconstruction of highest-quality MAGs from the output of multiple genome-binning tools. RESULTS: MAGScoT outperforms popular bin-refinement solutions in terms of quality and quantity of MAGs as well as computation time and resource consumption. AVAILABILITY AND IMPLEMENTATION: MAGScoT is available via GitHub (https://github.com/ikmb/MAGScoT) and as an easy-to-use Docker container (https://hub.docker.com/repository/docker/ikmb/magscot). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Microbiota , Metagenômica , Metagenoma
5.
Gastroenterology ; 160(5): 1784-1798.e0, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33387530

RESUMO

BACKGROUND & AIMS: To influence host and disease phenotype, compositional microbiome changes, which have been demonstrated in patients with primary sclerosing cholangitis (PSC), must be accompanied by functional changes. We therefore aimed to characterize the genetic potential of the gut microbiome in patients with PSC compared with healthy controls (HCs) and patients with inflammatory bowel disease (IBD). METHODS: Fecal DNA from 2 cohorts (1 Norwegian and 1 German), in total comprising 136 patients with PSC (58% with IBD), 158 HCs, and 93 patients with IBD without PSC, were subjected to metagenomic shotgun sequencing, generating 17 billion paired-end sequences, which were processed using HUMAnN2 and MetaPhlAn2, and analyzed using generalized linear models and random effects meta-analyses. RESULTS: Patients with PSC had fewer microbial genes compared with HCs (P < .0001). Compared with HCs, patients with PSC showed enrichment and increased prevalence of Clostridium species and a depletion of, for example, Eubacterium spp and Ruminococcus obeum. Patients with PSC showed marked differences in the abundance of genes related to vitamin B6 synthesis and branched-chain amino acid synthesis (Qfdr < .05). Targeted metabolomics of plasma from an independent set of patients with PSC and controls found reduced concentrations of vitamin B6 and branched-chain amino acids in PSC (P < .0001), which strongly associated with reduced liver transplantation-free survival (log-rank P < .001). No taxonomic or functional differences were detected between patients with PSC with and without IBD. CONCLUSIONS: The gut microbiome in patients with PSC exhibits large functional differences compared with that in HCs, including microbial metabolism of essential nutrients. Alterations in related circulating metabolites associated with disease course, suggesting that microbial functions may be relevant for the disease process in PSC.


Assuntos
Bactérias/metabolismo , Colangite Esclerosante/microbiologia , Microbioma Gastrointestinal , Metaboloma , Metagenoma , Adolescente , Adulto , Idoso , Bactérias/genética , Estudos de Casos e Controles , Colangite Esclerosante/sangue , Colangite Esclerosante/diagnóstico , Colangite Esclerosante/cirurgia , Estudos Transversais , Disbiose , Fezes/microbiologia , Feminino , Alemanha , Humanos , Transplante de Fígado , Masculino , Metabolômica , Metagenômica , Pessoa de Meia-Idade , Noruega , Filogenia , Intervalo Livre de Progressão , Adulto Jovem
6.
Gut ; 70(3): 522-530, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33168600

RESUMO

OBJECTIVE: The intestinal microbiome affects the prevalence and pathophysiology of a variety of diseases ranging from inflammation to cancer. A reduced taxonomic or functional diversity of the microbiome was often observed in association with poorer health outcomes or disease in general. Conversely, factors or manifest diseases that determine the long-term stability or instability of the microbiome are largely unknown. We aimed to identify disease-relevant phenotypes associated with faecal microbiota (in-)stability. DESIGN: A total of 2564 paired faecal samples from 1282 participants of the population-based Study of Health in Pomerania (SHIP) were collected at a 5-year (median) interval and microbiota profiles determined by 16S rRNA gene sequencing. The changes in faecal microbiota over time were associated with highly standardised and comprehensive phenotypic data to determine factors related to microbiota (in-)stability. RESULTS: The overall microbiome landscape remained remarkably stable over time. The greatest microbiome instability was associated with factors contributing to metabolic syndrome such as fatty liver disease and diabetes mellitus. These, in turn, were associated with an increase in facultative pathogens such as Enterobacteriaceae or Escherichia/Shigella. Greatest stability of the microbiome was determined by higher initial alpha diversity, female sex, high household income and preserved exocrine pancreatic function. Participants who newly developed fatty liver disease or diabetes during the 5-year follow-up already displayed significant microbiota changes at study entry when the diseases were absent. CONCLUSION: This study identifies distinct components of metabolic liver disease to be associated with instability of the intestinal microbiome, increased abundance of facultative pathogens and thus greater susceptibility toward dysbiosis-associated diseases.


Assuntos
Diabetes Mellitus/metabolismo , Disbiose/complicações , Insuficiência Pancreática Exócrina/fisiopatologia , Microbioma Gastrointestinal , Hepatopatias/metabolismo , Adulto , Idoso , Biodiversidade , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Alemanha , Humanos , Renda/estatística & dados numéricos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , RNA Ribossômico 16S/análise , Fatores de Risco , Fatores Sexuais
7.
BMC Microbiol ; 21(1): 276, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635060

RESUMO

Compared to the huge microbial diversity in most mammals, human gut microbiomes have lost diversity while becoming specialized for animal-based diets - especially compared to chimps, their genetically closest ancestors. The lowered microbial diversity within the gut of westernized populations has also been associated with different kinds of chronic inflammatory diseases in humans. To further deepen our knowledge on phylogenetic and ecologic impacts on human health and fitness, we established the herein presented biobank as well as its comprehensive microbiota analysis. In total, 368 stool samples from 38 different animal species, including Homo sapiens, belonging to four diverse mammalian orders were collected at seven different locations and analyzed by 16S rRNA gene amplicon sequencing. Comprehensive data analysis was performed to (i) determine the overall impact of host phylogeny vs. diet, location, and ecology and to (ii) examine the general pattern of fecal bacterial diversity across captive mammals and humans.By using a controlled study design with captive mammals we could verify that host phylogeny is the most dominant driver of mammalian gut microbiota composition. However, the effect of ecology appears to be able to overcome host phylogeny and should therefore be studied in more detail in future studies. Most importantly, our study could observe a remarkable decrease of Spirochaetes and Prevotella in westernized humans and platyrrhines, which is probably not only due to diet, but also to the social behavior and structure in these communities.Our study highlights the importance of phylogenetic relationship and ecology within the evolution of mammalian fecal microbiota composition. Particularly, the observed decrease of Spirochaetes and Prevotella in westernized communities might be associated to lifestyle dependent rapid evolutionary changes, potentially involved in the establishment of dysbiotic microbiomes, which promote the etiology of chronic diseases.


Assuntos
Ecossistema , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Prevotella/fisiologia , Spirochaetales/fisiologia , População Urbana , Bactérias/classificação , Bactérias/genética , Biodiversidade , Dieta , Humanos , Filogenia , RNA Ribossômico 16S/genética
8.
BMC Microbiol ; 21(1): 162, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078289

RESUMO

BACKGROUND: Human well-being has been linked to the composition and functional capacity of the intestinal microbiota. As regular exercise is known to improve human health, it is not surprising that exercise was previously described to positively modulate the gut microbiota, too. However, most previous studies mainly focused on either elite athletes or animal models. Thus, we conducted a randomised intervention study that focused on the effects of different types of training (endurance and strength) in previously physically inactive, healthy adults in comparison to controls that did not perform regular exercise. Overall study duration was ten weeks including six weeks of intervention period. In addition to 16S rRNA gene amplicon sequencing of longitudinally sampled faecal material of participants (six time points), detailed body composition measurements and analysis of blood samples (at baseline and after the intervention) were performed to obtain overall physiological changes within the intervention period. Activity tracker devices (wrist-band wearables) provided activity status and sleeping patterns of participants as well as exercise intensity and heart measurements. RESULTS: Different biometric responses between endurance and strength activities were identified, such as a significant increase of lymphocytes and decrease of mean corpuscular haemoglobin concentration (MCHC) only within the strength intervention group. In the endurance group, we observed a significant reduction in hip circumference and an increase in physical working capacity (PWC). Though a large variation of microbiota changes were observed between individuals of the same group, we did not find specific collective alterations in the endurance nor the strength groups, arguing for microbiome variations specific to individuals, and therefore, were not captured in our analysis. CONCLUSIONS: We could show that different types of exercise have distinct but moderate effects on the overall physiology of humans and very distinct microbial changes in the gut. The observed overall changes during the intervention highlight the importance of physical activity on well-being. Future studies should investigate the effect of exercise on a longer timescale, investigate different training intensities and consider high-resolution shotgun metagenomics technology. TRIAL REGISTRATION: DRKS, DRKS00015873 . Registered 12 December 2018; Retrospectively registered.


Assuntos
Exercício Físico , Microbioma Gastrointestinal , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Dieta , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Adulto Jovem
9.
Gut ; 69(4): 665-672, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31243055

RESUMO

BACKGROUND: Patients with primary sclerosing cholangitis (PSC) display an altered colonic microbiome compared with healthy controls. However, little is known on the bile duct microbiome and its interplay with bile acid metabolism in PSC. METHODS: Patients with PSC (n=43) and controls without sclerosing cholangitis (n=22) requiring endoscopic retrograde cholangiography were included prospectively. Leading indications in controls were sporadic choledocholithiasis and papillary adenoma. A total of 260 biospecimens were collected from the oral cavity, duodenal fluid and mucosa and ductal bile. Microbiomes of the upper alimentary tract and ductal bile were profiled by sequencing the 16S-rRNA-encoding gene (V1-V2). Bile fluid bile acid composition was measured by high-performance liquid chromatography mass spectrometry and validated in an external cohort (n=20). RESULTS: The bile fluid harboured a diverse microbiome that was distinct from the oral cavity, the duodenal fluid and duodenal mucosa communities. The upper alimentary tract microbiome differed between PSC patients and controls. However, the strongest differences between PSC patients and controls were observed in the ductal bile fluid, including reduced biodiversity (Shannon entropy, p=0.0127) and increase of pathogen Enterococcus faecalis (FDR=4.18×10-5) in PSC. Enterococcus abundance in ductal bile was strongly correlated with concentration of the noxious secondary bile acid taurolithocholic acid (r=0.60, p=0.0021). CONCLUSION: PSC is characterised by an altered microbiome of the upper alimentary tract and bile ducts. Biliary dysbiosis is linked with increased concentrations of the proinflammatory and potentially cancerogenic agent taurolithocholic acid.


Assuntos
Bile/microbiologia , Colangite Esclerosante/microbiologia , Disbiose/complicações , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Ductos Biliares/microbiologia , Estudos de Casos e Controles , Estudos de Coortes , Duodeno/microbiologia , Disbiose/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/microbiologia , Adulto Jovem
10.
Gastroenterology ; 156(4): 1010-1015, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30391469

RESUMO

BACKGROUND & AIMS: Changes in intestinal microbiome composition are associated with inflammatory, metabolic, and malignant disorders. We studied how exocrine pancreatic function affects intestinal microbiota. METHODS: We performed 16S ribosomal RNA gene sequencing analysis of stool samples from 1795 volunteers from the population-based Study of Health in Pomerania who had no history of pancreatic disease. We also measured fecal pancreatic elastase by enzyme-linked immunosorbent assay and performed quantitative imaging of secretin-stimulated pancreatic fluid secretion. Associations of exocrine pancreatic function with microbial diversity or individual genera were calculated by permutational analysis of variance or linear regression, respectively. RESULTS: Differences in pancreatic elastase levels associated with significantly (P < .0001) greater changes in microbiota diversity than with participant age, body mass index, sex, smoking, alcohol consumption, or dietary factors. Significant changes in the abundance of 30 taxa, such as an increase in Prevotella (q < .0001) and a decrease of Bacteroides (q < .0001), indicated a shift from a type-1 to a type-2 enterotype. Changes in pancreatic fluid secretion alone were also associated with changes in microbial diversity (P = .0002), although to a lesser degree. CONCLUSIONS: In an analysis of fecal samples from 1795 volunteers, pancreatic acinar cell, rather than duct cell, function is presently the single most significant host factor to be associated with changes in intestinal microbiota composition.


Assuntos
Bactérias/isolamento & purificação , Insuficiência Pancreática Exócrina/fisiopatologia , Fezes/enzimologia , Microbioma Gastrointestinal , Pâncreas/fisiopatologia , Elastase Pancreática/metabolismo , Células Acinares/fisiologia , Bacteroides/isolamento & purificação , Biodiversidade , Interações entre Hospedeiro e Microrganismos , Humanos , Pâncreas/citologia , Testes de Função Pancreática , Prevotella/isolamento & purificação , RNA Ribossômico 16S/análise
11.
Nucleic Acids Res ; 46(4): e23, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29194524

RESUMO

The vast majority of microorganisms on Earth reside in often-inseparable environment-specific communities-microbiomes. Meta-genomic/-transcriptomic sequencing could reveal the otherwise inaccessible functionality of microbiomes. However, existing analytical approaches focus on attributing sequencing reads to known genes/genomes, often failing to make maximal use of available data. We created faser (functional annotation of sequencing reads), an algorithm that is optimized to map reads to molecular functions encoded by the read-correspondent genes. The mi-faser microbiome analysis pipeline, combining faser with our manually curated reference database of protein functions, accurately annotates microbiome molecular functionality. mi-faser's minutes-per-microbiome processing speed is significantly faster than that of other methods, allowing for large scale comparisons. Microbiome function vectors can be compared between different conditions to highlight environment-specific and/or time-dependent changes in functionality. Here, we identified previously unseen oil degradation-specific functions in BP oil-spill data, as well as functional signatures of individual-specific gut microbiome responses to a dietary intervention in children with Prader-Willi syndrome. Our method also revealed variability in Crohn's Disease patient microbiomes and clearly distinguished them from those of related healthy individuals. Our analysis highlighted the microbiome role in CD pathogenicity, demonstrating enrichment of patient microbiomes in functions that promote inflammation and that help bacteria survive it.


Assuntos
Metagenômica/métodos , Microbiota , Anotação de Sequência Molecular/métodos , Algoritmos , Proteínas de Bactérias/fisiologia , Criança , Doença de Crohn/microbiologia , Humanos , Síndrome de Prader-Willi/microbiologia , Alinhamento de Sequência
12.
J Antimicrob Chemother ; 74(10): 2916-2925, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31355848

RESUMO

BACKGROUND: Chronic pulmonary infections by Pseudomonas aeruginosa require frequent intravenous antibiotic treatment in cystic fibrosis (CF) patients. Emergence of antimicrobial resistance is common in these patients, which to date has been investigated at long-term intervals only. OBJECTIVES: To investigate under close to real-time conditions the dynamics of the response by P. aeruginosa to a single course of antibiotic therapy and the potentially associated rapid spread of antimicrobial resistance, as well as the impact on the airway microbiome. METHODS: We investigated a cohort of adult CF patients that were treated with a single course of antimicrobial combination therapy. Using daily sampling during treatment, we quantified the expression of resistance by P. aeruginosa (median of six isolates per daily sample, 347 isolates in total), measured bacterial load by P. aeruginosa-specific quantitative PCR and characterized the airway microbiome with a 16S rRNA-based approach. WGS was performed to reconstruct intrapatient strain phylogenies. RESULTS: In two patients, we found rapid and large increases in resistance to meropenem and ceftazidime. Phylogenetic reconstruction of strain relationships revealed that resistance shifts are probably due to de novo evolution and/or the selection of resistant subpopulations. We observed high interindividual variation in the reduction of bacterial load, microbiome composition and antibiotic resistance. CONCLUSIONS: We show that CF-associated P. aeruginosa populations can quickly respond to antibiotic therapy and that responses are patient specific. Thus, resistance evolution can be a direct consequence of treatment, and drug efficacy can be lost much faster than usually assumed. The consideration of these patient-specific rapid resistance shifts can help to improve treatment of CF-associated infections, for example by deeper sampling of bacteria for diagnostics, repeated monitoring of pathogen susceptibility and switching between drugs.


Assuntos
Antibacterianos/farmacologia , Pulmão/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Resistência beta-Lactâmica , beta-Lactamas/farmacologia , Adulto , Antibacterianos/administração & dosagem , Carga Bacteriana , Análise por Conglomerados , Estudos de Coortes , Fibrose Cística/complicações , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Humanos , Masculino , Filogenia , Pseudomonas aeruginosa/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Adulto Jovem , beta-Lactamas/administração & dosagem
13.
Brief Bioinform ; 18(3): 479-487, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016392

RESUMO

Electronic access to multiple data types, from generic information on biological systems at different functional and cellular levels to high-throughput molecular data from human patients, is a prerequisite of successful systems medicine research. However, scientists often encounter technical and conceptual difficulties that forestall the efficient and effective use of these resources. We summarize and discuss some of these obstacles, and suggest ways to avoid or evade them.The methodological gap between data capturing and data analysis is huge in human medical research. Primary data producers often do not fully apprehend the scientific value of their data, whereas data analysts maybe ignorant of the circumstances under which the data were collected. Therefore, the provision of easy-to-use data access tools not only helps to improve data quality on the part of the data producers but also is likely to foster an informed dialogue with the data analysts.We propose a means to integrate phenotypic data, questionnaire data and microbiome data with a user-friendly Systems Medicine toolbox embedded into i2b2/tranSMART. Our approach is exemplified by the integration of a basic outlier detection tool and a more advanced microbiome analysis (alpha diversity) script. Continuous discussion with clinicians, data managers, biostatisticians and systems medicine experts should serve to enrich even further the functionality of toolboxes like ours, being geared to be used by 'informed non-experts' but at the same time attuned to existing, more sophisticated analysis tools.


Assuntos
Inflamação , Pesquisa Biomédica , Humanos , Análise de Sistemas
14.
J Allergy Clin Immunol ; 141(5): 1668-1676.e16, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29421277

RESUMO

BACKGROUND: Genomic approaches have revealed characteristic site specificities of skin bacterial community structures. In addition, in children with atopic dermatitis (AD), characteristic shifts were described at creases and, in particular, during flares, which have been postulated to mirror disturbed skin barrier function, cutaneous inflammation, or both. OBJECTIVE: We sought to comprehensively analyze microbial configurations in patients with AD across body sites and to explore the effect of distinct abnormalities of epidermal barrier function. METHODS: The skin microbiome was determined by using bacterial 16S rRNA sequencing at 4 nonlesional body sites, as well as acute and chronic lesions of 10 patients with AD and 10 healthy control subjects matched for age, sex, and filaggrin (FLG) mutation status. Nonlesional sampling sites were characterized for skin physiology parameters, including chromatography-based lipid profiling. RESULTS: Epidermal lipid composition, in particular levels of long-chain unsaturated free fatty acids, strongly correlated with bacterial composition, in particular Propionibacteria and Corynebacteria abundance. AD displayed a distinct community structure, with increased abundance and altered composition of staphylococcal species across body sites, the strongest loss of diversity and increase in Staphylococcus aureus seen on chronic lesions, and a progressive shift from nonlesional skin to acute and chronic lesions. FLG-deficient skin showed a distinct microbiome composition resembling in part the AD-related pattern. CONCLUSION: Epidermal barrier integrity and function affect the skin microbiome composition. AD shows an altered microbial configuration across diverse body sites, which is most pronounced at sites of predilection and AD. Eczematous affection appears to be a more important determinant than body site.


Assuntos
Eczema/microbiologia , Eczema/patologia , Epiderme/microbiologia , Epiderme/patologia , Inflamação/microbiologia , Inflamação/patologia , Lipídeos/fisiologia , Adulto , Estudos de Casos e Controles , Dermatite Atópica/genética , Dermatite Atópica/microbiologia , Dermatite Atópica/patologia , Eczema/genética , Feminino , Proteínas Filagrinas , Humanos , Inflamação/genética , Proteínas de Filamentos Intermediários/genética , Masculino , Microbiota/fisiologia , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Fenômenos Fisiológicos da Pele/genética , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/genética , Adulto Jovem
18.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421266

RESUMO

Molecular profiling techniques such as metagenomics, metatranscriptomics or metabolomics offer important insights into the functional diversity of the microbiome. In contrast, 16S rRNA gene sequencing, a widespread and cost-effective technique to measure microbial diversity, only allows for indirect estimation of microbial function. To mitigate this, tools such as PICRUSt2, Tax4Fun2, PanFP and MetGEM infer functional profiles from 16S rRNA gene sequencing data using different algorithms. Prior studies have cast doubts on the quality of these predictions, motivating us to systematically evaluate these tools using matched 16S rRNA gene sequencing, metagenomic datasets, and simulated data. Our contribution is threefold: (i) using simulated data, we investigate if technical biases could explain the discordance between inferred and expected results; (ii) considering human cohorts for type two diabetes, colorectal cancer and obesity, we test if health-related differential abundance measures of functional categories are concordant between 16S rRNA gene-inferred and metagenome-derived profiles and; (iii) since 16S rRNA gene copy number is an important confounder in functional profiles inference, we investigate if a customised copy number normalisation with the rrnDB database could improve the results. Our results show that 16S rRNA gene-based functional inference tools generally do not have the necessary sensitivity to delineate health-related functional changes in the microbiome and should thus be used with care. Furthermore, we outline important differences in the individual tools tested and offer recommendations for tool selection.


Assuntos
Metagenoma , Microbiota , Humanos , RNA Ribossômico 16S/genética , Genes de RNAr , Microbiota/genética , Algoritmos
19.
Front Microbiol ; 15: 1347422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476944

RESUMO

Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA