Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 294(21): 8438-8451, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30918024

RESUMO

Antibodies that recognize amyloidogenic aggregates with high conformational and sequence specificity are important for detecting and potentially treating a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, these types of antibodies are challenging to generate because of the large size, hydrophobicity, and heterogeneity of protein aggregates. To address this challenge, we developed a method for generating antibodies specific for amyloid aggregates. First, we grafted amyloidogenic peptide segments from the target polypeptide [Alzheimer's amyloid-ß (Aß) peptide] into the complementarity-determining regions (CDRs) of a stable antibody scaffold. Next, we diversified the grafted and neighboring CDR sites using focused mutagenesis to sample each WT or grafted residue, as well as one to five of the most commonly occurring amino acids at each site in human antibodies. Finally, we displayed these antibody libraries on the surface of yeast cells and selected antibodies that strongly recognize Aß-amyloid fibrils and only weakly recognize soluble Aß. We found that this approach enables the generation of monovalent and bivalent antibodies with nanomolar affinity for Aß fibrils. These antibodies display high conformational and sequence specificity as well as low levels of nonspecific binding and recognize a conformational epitope at the extreme N terminus of human Aß. We expect that this systematic approach will be useful for generating antibodies with conformational and sequence specificity against a wide range of peptide and protein aggregates associated with neurodegenerative disorders.


Assuntos
Peptídeos beta-Amiloides , Regiões Determinantes de Complementaridade , Anticorpos de Cadeia Única , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Humanos , Mutagênese Sítio-Dirigida , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
2.
Mol Pharm ; 17(7): 2555-2569, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32453957

RESUMO

The ability of antibodies to recognize their target antigens with high specificity is fundamental to their natural function. Nevertheless, therapeutic antibodies display variable and difficult-to-predict levels of nonspecific and self-interactions that can lead to various drug development challenges, including antibody aggregation, abnormally high viscosity, and rapid antibody clearance. Here we report a method for predicting the overall specificity of antibodies in terms of their relative risk for displaying high levels of nonspecific or self-interactions at physiological conditions. We find that individual and combined sets of chemical rules that limit the maximum and minimum numbers of certain solvent-exposed amino acids in antibody variable regions are strong predictors of specificity for large panels of preclinical and clinical-stage antibodies. We also demonstrate how the chemical rules can be used to identify sites that mediate nonspecific interactions in suboptimal antibodies and guide the design of targeted sublibraries that yield variants with high antibody specificity. These findings can be readily used to improve the selection and engineering of antibodies with drug-like specificity.


Assuntos
Anticorpos Monoclonais/química , Desenvolvimento de Medicamentos/métodos , Região Variável de Imunoglobulina/química , Anticorpos Monoclonais/imunologia , Bioengenharia/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Químicos , Sensibilidade e Especificidade , Solubilidade , Viscosidade
3.
Biochem Eng J ; 137: 365-374, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30666176

RESUMO

The widespread use of monoclonal antibodies for therapeutic applications has led to intense interest in optimizing several of their natural properties (affinity, specificity, stability, solubility and effector functions) as well as introducing non-natural activities (bispecificity and cytotoxicity mediated by conjugated drugs). A common challenge during antibody optimization is that improvements in one property (e.g., affinity) can lead to deficits in other properties (e.g., stability). Here we review recent advances in understanding trade-offs between different antibody properties, including affinity, specificity, stability and solubility. We also review new approaches for co-optimizing multiple antibody properties and discuss how these methods can be used to rapidly and systematically generate antibodies for a wide range of applications.

4.
Protein Eng Des Sel ; 31(11): 409-418, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770934

RESUMO

Specificity is one of the most important and complex properties that is central to both natural antibody function and therapeutic antibody efficacy. However, it has proven extremely challenging to define robust guidelines for predicting antibody specificity. Here we evaluated the physicochemical determinants of antibody specificity for multiple panels of antibodies, including >100 clinical-stage antibodies. Surprisingly, we find that the theoretical net charge of the complementarity-determining regions (CDRs) is a strong predictor of antibody specificity. Antibodies with positively charged CDRs have a much higher risk of low specificity than antibodies with negatively charged CDRs. Moreover, the charge of the entire set of six CDRs is a much better predictor of antibody specificity than the charge of individual CDRs, variable domains (VH or VL) or the entire variable fragment (Fv). The best indicators of antibody specificity in terms of CDR amino acid composition are reduced levels of arginine and lysine and increased levels of aspartic and glutamic acid. Interestingly, clinical-stage antibodies with negatively charged CDRs also have a lower risk for poor biophysical properties in general, including a reduced risk for high levels of self-association. These findings provide powerful guidelines for predicting antibody specificity and for identifying safe and potent antibody therapeutics.


Assuntos
Anticorpos/química , Anticorpos/imunologia , Especificidade de Anticorpos , Regiões Determinantes de Complementaridade/química , Sequência de Aminoácidos , Humanos
5.
Protein Eng Des Sel ; 28(10): 339-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26386257

RESUMO

An attractive approach for designing lead antibody candidates is to mimic natural protein interactions by grafting peptide recognition motifs into the complementarity-determining regions (CDRs). We are using this approach to generate single-domain (VH) antibodies specific for amyloid-forming proteins such as the Alzheimer's Aß peptide. Here, we use random mutagenesis and yeast surface display to improve the binding affinity of a lead VH domain grafted with Aß residues 33-42 in CDR3. Interestingly, co-selection for improved Aß binding and VH display on the surface of yeast yields antibody domains with improved affinity and reduced stability. The highest affinity VH domains were strongly destabilized on the surface of yeast as well as unfolded when isolated as autonomous domains. In contrast, stable VH domains with improved affinity were reliably identified using yeast surface display by replacing the display antibody that recognizes a linear epitope tag at the terminus of both folded and unfolded VH domains with a conformational ligand (Protein A) that recognizes a discontinuous epitope on the framework of folded VH domains. Importantly, we find that selection for improved stability using Protein A without simultaneous co-selection for improved Aß binding leads to strong enrichment for stabilizing mutations that reduce antigen binding. Our findings highlight the importance of simultaneously optimizing affinity and stability to improve the rapid isolation of well-folded and specific antibody fragments.


Assuntos
Peptídeos beta-Amiloides/imunologia , Afinidade de Anticorpos , Evolução Molecular Direcionada/métodos , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Anticorpos de Domínio Único/química , Proteína Estafilocócica A/imunologia
6.
J Pharm Sci ; 104(2): 627-39, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25581103

RESUMO

During transport and storage, vaccines may be exposed to temperatures outside of the range recommended for storage, potentially causing efficacy losses. To better understand and prevent such losses, dominant negative inhibitor (DNI), a recombinant protein antigen for a candidate vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. Immunogenicity of liquid vaccines also decreased when stored at 40°C for 8 weeks, as measured by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week of storage of the liquid formulation at 40°C. In contrast, upon lyophilization, no additional deamidation after 4 weeks at 40°C and no detectable changes in DNI structure or reduction in immunogenicity after 16 weeks at 40°C were observed. Vaccines containing aluminum hydroxide and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum hydroxide, with more mice responding to a single dose.


Assuntos
Adjuvantes Farmacêuticos/química , Hidróxido de Alumínio/química , Vacinas contra Antraz/química , Lipídeo A/química , Adjuvantes Farmacêuticos/metabolismo , Hidróxido de Alumínio/metabolismo , Animais , Vacinas contra Antraz/metabolismo , Estabilidade de Medicamentos , Feminino , Liofilização/métodos , Congelamento , Vidro , Lipídeo A/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
7.
Eur J Pharm Biopharm ; 85(2): 279-86, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23583494

RESUMO

Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge.


Assuntos
Estabilidade de Medicamentos , Proteínas Recombinantes/química , Ricina/química , Vacinas de Subunidades Antigênicas/química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos/química , Adjuvantes Farmacêuticos/farmacologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Soluções Tampão , Química Farmacêutica/métodos , Armazenamento de Medicamentos , Excipientes/química , Feminino , Liofilização/métodos , Temperatura Alta , Camundongos , Tamanho da Partícula , Proteínas Recombinantes/imunologia , Ricina/imunologia , Temperatura de Transição , Trealose/química , Vacinas de Subunidades Antigênicas/imunologia , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA