Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 112(5): 1141-1158, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209492

RESUMO

Very long-chain fatty acids (VLCFAs) are important industrial raw materials and can be produced by genetically modified oil plants. For a long time, class A lysophosphatidic acid acyltransferase (LPAT) was considered unable to promote the accumulation of VLCFA in oil crops. The bottlenecks that the transgenic high VLCFA lines have an oil content penalty and the low amount of VLCFA in phosphatidylcholine remains intractable. In the present study, a class A LPAT2 from Camelina sativa (CsaLPAT2) promoting VLCFAs accumulation in phospholipid was found. Overexpression of CsaLPAT2 alone in Arabidopsis seeds significantly increased the VLCFA content in triacylglycerol, including C20:0, C20:2, C20:3, C22:0, and C22:1. The proportion of phosphatidic acid molecules containing VLCFAs in transgenic seeds reached up to 45%, which was 2.8-fold greater than that in wild type. The proportion of phosphatidylcholine and diacylglycerol molecules containing VLCFAs also increased significantly. Seed size in CsaLPAT2 transgenic lines showed a slight increase without an oil content penalty. The total phospholipid content in the seed of the CsaLPAT2 transgenic line was significantly increased. Furthermore, the function of class A LPAT in promoting the accumulation of VLCFAs is conserved in the representative oil crops of Brassicaceae, such as C. sativa, Arabidopsis thaliana, Brassica napus, Brassica rapa, and Brassica oleracea. The findings of this study provide a promising gene resource for the production of VLCFAs.


Assuntos
Arabidopsis , Brassicaceae , Triglicerídeos , Fosfolipídeos , Plantas Geneticamente Modificadas/genética , Óleos de Plantas , Ácidos Graxos/genética , Brassicaceae/genética , Sementes/genética , Arabidopsis/genética , Fosfatidilcolinas
2.
Theor Appl Genet ; 135(9): 2969-2991, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841418

RESUMO

KEY MESSAGE: The QTL hotspots determining seed glucosinolate content instead of only four HAG1 loci and elucidation of a potential regulatory model for rapeseed SGC variation. Glucosinolates (GSLs) are amino acid-derived, sulfur-rich secondary metabolites that function as biopesticides and flavor compounds, but the high seed glucosinolate content (SGC) reduces seed quality for rapeseed meal. To dissect the genetic mechanism and further reduce SGC in rapeseed, QTL mapping was performed using an updated high-density genetic map based on a doubled haploid (DH) population derived from two parents that showed significant differences in SGC. In 15 environments, a total of 162 significant QTLs were identified for SGC and then integrated into 59 consensus QTLs, of which 32 were novel QTLs. Four QTL hotspot regions (QTL-HRs) for SGC variation were discovered on chromosomes A09, C02, C07 and C09, including seven major QTLs that have previously been reported and four novel major QTLs in addition to HAG1 loci. SGC was largely determined by superimposition of advantage allele in the four QTL-HRs. Important candidate genes directly related to GSL pathways were identified underlying the four QTL-HRs, including BnaC09.MYB28, BnaA09.APK1, BnaC09.SUR1 and BnaC02.GTR2a. Related differentially expressed candidates identified in the minor but environment stable QTLs indicated that sulfur assimilation plays an important rather than dominant role in SGC variation. A potential regulatory model for rapeseed SGC variation constructed by combining candidate GSL gene identification and differentially expressed gene analysis based on RNA-seq contributed to a better understanding of the GSL accumulation mechanism. This study provides insights to further understand the genetic regulatory mechanism of GSLs, as well as the potential loci and a new route to further diminish the SGC in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Aminoácidos/metabolismo , Agentes de Controle Biológico/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Brassica rapa/genética , Glucosinolatos/genética , RNA-Seq , Sementes/genética , Sementes/metabolismo , Enxofre
3.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639198

RESUMO

Fatty acid desaturases add a second bond into a single bond of carbon atoms in fatty acid chains, resulting in an unsaturated bond between the two carbons. They are classified into soluble and membrane-bound desaturases, according to their structure, subcellular location, and function. The orthologous genes in Camelina sativa were identified and analyzed, and a total of 62 desaturase genes were identified. It was revealed that they had the common fatty acid desaturase domain, which has evolved separately, and the proteins of the same family also originated from the same ancestry. A mix of conserved, gained, or lost intron structure was obvious. Besides, conserved histidine motifs were found in each family, and transmembrane domains were exclusively revealed in the membrane-bound desaturases. The expression profile analysis of C. sativa desaturases revealed an increase in young leaves, seeds, and flowers. C. sativa ω3-fatty acid desaturases CsaFAD7 and CsaDAF8 were cloned and the subcellular localization analysis showed their location in the chloroplast. They were transferred into Arabidopsis thaliana to obtain transgenic lines. It was revealed that the ω3-fatty acid desaturase could increase the C18:3 level at the expense of C18:2, but decreases in oil content and seed weight, and wrinkled phenotypes were observed in transgenic CsaFAD7 lines, while no significant change was observed in transgenic CsaFAD8 lines in comparison to the wild-type. These findings gave insights into the characteristics of desaturase genes, which could provide an excellent basis for further investigation for C. sativa improvement, and overexpression of ω3-fatty acid desaturases in seeds could be useful in genetic engineering strategies, which are aimed at modifying the fatty acid composition of seed oil.


Assuntos
Brassicaceae/metabolismo , Evolução Molecular , Ácidos Graxos Dessaturases/metabolismo , Regulação da Expressão Gênica de Plantas , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Simulação por Computador , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Frações Subcelulares
4.
BMC Genomics ; 20(1): 649, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412776

RESUMO

BACKGROUND: Polyploidy provides a means of interspecific genome transfer to incorporate preferable traits from progenitor to progeny. However, few studies on miRNA expression profiles of interspecific hybrids of B. napus (AnAnCnCn) and B. rapa (ArAr) have been reported. RESULTS: Here, we apply small RNA sequencing to explore miRNA expression patterns between B. napus, B. rapa and their F1 hybrid. Bioinformatics analysis identified 376, 378, 383 conserved miRNAs and 82, 76, 82 novel miRNAs in B. napus, B. rapa and the F1 hybrid, respectively. Moreover, 213 miRNAs were found to be differentially expressed between B. napus, B. rapa and the F1 hybrid. The present study also shows 211 miRNAs, including 77 upregulated and 134 downregulated miRNAs, to be nonadditively expressed in the F1 hybrid. Furthermore, miRNA synteny analysis revealed high genomic conservation between the genomes of B. napus, B. rapa and their F1 hybrid, with some miRNA loss and gain events in the F1 hybrid. CONCLUSIONS: This study not only provides useful resources for exploring global miRNA expression patterns and genome structure but also facilitates genetic research on the roles of miRNAs in genomic interactions of Brassica allopolyploids.


Assuntos
Brassica napus/genética , Brassica rapa/genética , Perfilação da Expressão Gênica , Hibridização Genética , MicroRNAs/genética , Triploidia , Genômica
5.
BMC Plant Biol ; 19(1): 21, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634904

RESUMO

BACKGROUND: Rapeseed (Brassica napus, B. napus) is an important oil seed crop in the world. Previous studies showed that seed germination vigor might be correlated with seed oil content in B. napus, but the regulation mechanism for seed germination has not yet been explained clearly. Dissecting the regulation mechanism of seed germination and germination vigor is necessary. RESULTS: Here, proteomic and genomic approaches were used to analyze the germination process in B. napus seeds with different oil content. The identification of 165 differentially expressed proteins (DEPs) in the germinating seeds of B. napus with high and low oil content was accomplished by two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE). The comparative proteomic results revealed that seeds with high oil content had higher metabolic activity, especially for sulfur amino acid metabolism. Thirty-one unique genes were shown to be significantly changed during germination between the seeds with high and low oil content, and thirteen of these genes were located within the confidence interval of germination-related quantitative trait locus (QTLs), which might play an important role in regulating seed germination vigor. CONCLUSIONS: The present results are of importance for the understanding of the regulation mechanism for seed germination vigor in B. napus.


Assuntos
Brassica napus/metabolismo , Brassica napus/fisiologia , Genômica/métodos , Germinação/fisiologia , Óleos de Plantas/metabolismo , Proteômica/métodos , Sementes/metabolismo , Sementes/fisiologia , Brassica napus/genética , Locos de Características Quantitativas/genética , Sementes/genética , Eletroforese em Gel Diferencial Bidimensional
7.
Breed Sci ; 69(1): 104-116, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31086488

RESUMO

The harvest index (HI) is the ratio of grain yield to the total biomass and represents the harvestable yield of crops. In Brassica napus, the HI is lower than that of other economically important crops, and limited relevant studies have been carried out regarding this issue. In this study, phenotypic analyses of 11 related traits showed the complexity of HI and the feasibility of cultivating desirable varieties with high HI. Quantitative trait loci (QTL) mapping based on a high-density genetic map identified 160 QTL, 163 epistatic loci pairs for HI and three closely related traits: seed yield (SY), biomass yield (BY) and plant height (PH), including two, five and three major QTL for HI, SY and PH, respectively. The related candidate genes underlying the QTL and epistatic loci with coding region variation were identified and investigated, including BnaA02g14010D, homologous to OsTB1, which functions as a negative regulator for lateral branching, and BnaA02g18890D, homologous to OsGW2, which controls grain width and weight. The complex correlation of HI with related traits, numerous QTL and epistatic loci and the candidate genes identified here provide new insights into the genetic architecture of HI, which might further enhance effective breeding strategies for yield improvement in rapeseed.

8.
BMC Genomics ; 18(1): 776, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025408

RESUMO

BACKGROUND: Deciphering the genetic architecture of a species is a good way to understand its evolutionary history, but also to tailor its profile for breeding elite cultivars with desirable traits. Aligning QTLs from diverse population in one map and utilizing it for comparison, but also as a basis for multiple analyses assure a stronger evidence to understand the genetic system related to a given phenotype. RESULTS: In this study, 439 genes involved in fatty acid (FA) and triacylglycerol (TAG) biosyntheses were identified in Brassica napus. B. napus genome showed mixed gene loss and insertion compared to B. rapa and B. oleracea, and C genome had more inserted genes. Identified QTLs for oil (OC-QTLs) and fatty acids (FA-QTLs) from nine reported populations were projected on the physical map of the reference genome "Darmor-bzh" to generate a map. Thus, 335 FA-QTLs and OC-QTLs could be highlighted and 82 QTLs were overlapping. Chromosome C3 contained 22 overlapping QTLs with all trait studied except for C18:3. In total, 218 candidate genes which were potentially involved in FA and TAG were identified in 162 QTLs confidence intervals and some of them might affect many traits. Also, 76 among these candidate genes were found inside 57 overlapping QTLs, and candidate genes for oil content were in majority (61/76 genes). Then, sixteen genes were found in overlapping QTLs involving three populations, and the remaining 60 genes were found in overlapping QTLs of two populations. Interaction network and pathway analysis of these candidate genes indicated ten genes that might have strong influence over the other genes that control fatty acids and oil formation. CONCLUSION: The present results provided new information for genetic basis of FA and TAG formation in B. napus. A map including QTLs from numerous populations was built, which could serve as reference to study the genome profile of B. napus, and new potential genes emerged which might affect seed oil. New useful tracks were showed for the selection of population or/and selection of interesting genes for breeding improvement purpose.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Ácidos Graxos/metabolismo , Loci Gênicos/genética , Óleos de Plantas/metabolismo , Locos de Características Quantitativas/genética , Sintenia , Mapeamento Cromossômico , Dosagem de Genes/genética , Alinhamento de Sequência
9.
BMC Genomics ; 16: 512, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26156054

RESUMO

BACKGROUND: Acyl-coA binding proteins (ACBPs) bind long chain acyl-CoA esters with very high affinity. Their possible involvement in fatty acid transportation from the plastid to the endoplasmic reticulum, prior to the formation of triacylglycerol has been suggested. Four classes of ACBPs were identified in Arabidopsis thaliana: the small ACBPs, the large ACBPs, the ankyrin repeats containing ACBPs and the kelch motif containing ACBPs. They differed in structure and in size, and showed multiple important functions. In the present study, Brassica napus ACBPs were identified and characterized. RESULTS: Eight copies of kelch motif ACBPs were cloned, it showed that B. napus ACBPs shared high amino acid sequence identity with A. thaliana, Brassica rapa and Brassica oleracea. Furthermore, phylogeny based on domain structure and comparison map showed the relationship and the evolution of ACBPs within Brassicaceae family: ACBPs evolved into four separate classes with different structure. Chromosome locations comparison showed conserved syntenic blocks. CONCLUSIONS: ACBPs were highly conserved in Brassicaceae. They evolved from a common ancestor, but domain duplication and rearrangement might separate them into four distinct classes, with different structure and functions. Otherwise, B. napus inherited kelch motif ACBPs from ancestor conserving chromosomal location, emphasizing preserved synteny block region. This study provided a first insight for exploring ACBPs in B. napus, which supplies a valuable tool for crop improvement in agriculture.


Assuntos
Brassica napus/genética , Inibidor da Ligação a Diazepam/química , Inibidor da Ligação a Diazepam/genética , Brassica napus/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Clonagem Molecular , Inibidor da Ligação a Diazepam/metabolismo , Genoma de Planta , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Sintenia
10.
Front Plant Sci ; 13: 862363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360294

RESUMO

Rapeseed is the second most important oil crop in the world. Improving seed yield and seed oil content are the two main highlights of the research. Unfortunately, rapeseed development is frequently affected by different diseases. Extensive research has been made through many years to develop elite cultivars with high oil, high yield, and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the most important strategies in the genetic deciphering of agronomic characteristics. To comprehend the distribution of these QTLs and to uncover the key regions that could simultaneously control multiple traits, 4,555 QTLs that have been identified during the last 25 years were aligned in one unique map, and a quantitative genomic map which involved 128 traits from 79 populations developed in 12 countries was constructed. The present study revealed 517 regions of overlapping QTLs which harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They could be selected to customize super-rapeseed cultivars. The gene ontology and the interaction network of those candidates revealed genes that highly interacted with the other genes and might have a strong influence on them. The expression and structure of these candidate genes were compared in eight rapeseed accessions and revealed genes of similar structures which were expressed differently. The present study enriches our knowledge of rapeseed genome characteristics and diversity, and it also provided indications for rapeseed molecular breeding improvement in the future.

11.
Front Genet ; 9: 182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872448

RESUMO

Diversities in structure and function of ACBP were discussed in this review. ACBP are important proteins that could transport newly synthesized fatty acid, activated into -coA, from plastid to endoplasmic reticulum, where oil in the form of triacylglycerol occurs. ACBP were detected in various animal and plants species, which indicated their importance in biological function. In fact, involvement of ACBP in important process such as lipid metabolism, regulation of enzyme and gene expression, and in response to plant stresses has been proven in several studies. In this review, findings on ACBP of 11 well-known oil crops were reviewed to comprehend diversity, comparative analyses on ACBP structure were made, and link between structure and function, tissue expression and subcellular location of ACBP were also observed. Incomplete reports in some species were mentioned, which might be encouraging to start or to perform deeper studies. Similar characteristics were found in paralogs ACBP, and orthologs ACBP had different functions, despite the high identity in amino acid sequence. At the end, it is confirmed that ortholog proteins could not necessarily display the same function, even from closely related species.

12.
Front Plant Sci ; 9: 1127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116254

RESUMO

Worldwide consumption of oil is increasing with the growing population in need for edible oil and the expansion of industry using biofuels. Then, demand for high yielding varieties of oil crops is always increasing. Brassica napus (rapeseed) is one of the most important oil crop in the world, therefore, increasing rapeseed yield through breeding is inevitable in order to cater for the high demand of vegetable oil and high-quality protein for live stocks. Quantitative trait loci (QTL) analysis is a powerful tool to identify important loci and which is also valuable for molecular marker assisted breeding. Seed-yield (SY) is a complex trait that is controlled by multiple loci and is affected directly by seed weight, seeds per silique and silique number. Some yield-related traits, such as plant height, biomass yield, flowering time, and so on, also affect the SY indirectly. This study reports the assembly of QTLs identified for seed-yield and yield-related traits in rapeseed, in one unique map. A total of 972 QTLs for seed-yield and yield-related were aligned into the physical map of B. napus Darmor-bzh and 92 regions where 198 QTLs overlapped, could be discovered on 16 chromosomes. Also, 147 potential candidate genes were discovered in 65 regions where 131 QTLs overlapped, and might affect nine different traits. At the end, interaction network of candidate genes was studied, and showed nine genes that could highly interact with the other genes, and might have more influence on them. The present results would be helpful to develop molecular markers for yield associated traits and could be used for breeding improvement in B. napus.

13.
Front Plant Sci ; 9: 1018, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065738

RESUMO

Fatty acid (FA) composition is the typical quantitative trait in oil seed crops, of which study is not only closely related to oil content, but is also more critical for the quality improvement of seed oil. The double haploid (DH) population named KN with a high density SNP linkage map was applied for quantitative trait loci (QTL) analysis of FA composition in this study. A total of 406 identified QTL were detected for eight FA components with an average confidence interval (CI) of 2.92 cM, the explained phenotypic variation (PV) value ranged from 1.49 to 45.05%. Totally, 204 consensus and 91 unique QTL were further obtained via meta-analysis method for the purpose of detecting multiple environment expressed and pleiotropic QTL, respectively. Of which, 74 stable expressed and 22 environmental specific QTL were also revealed, respectively. In order to make clear the genetic mechanism of FA metabolism at individual QTL level, conditional QTL analysis was also conducted and more than two thousand conditional QTL which could not be detected under the unconditional mapping were detected, which indicated the complex interrelationship of the QTL controlling FA content in rapeseed. Through comparative genomic analysis and homologous gene annotation, 61 candidates related to acyl lipid metabolism were identified underlying the CI of FA QTL. To further visualize the genetic mechanism of FA metabolism, an intuitive and meticulous network about acyl lipid metabolism was constructed and some closely related candidates were positioned. This study provided a more accurate localization for stable and pleiotropic QTL, and a deeper dissection of the molecular regulatory mechanism of FA metabolism in rapeseed.

14.
Front Plant Sci ; 8: 177, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261237

RESUMO

Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, protein-dependent DNA cleavage systems (i.e., zinc-finger nucleases, ZFN, and transcription activator-like effector nucleases, TALEN), RNA-dependent DNA cleavage systems (i.e., clustered regularly interspaced short palindromic repeats-CRISPR associated proteins, CRISPR-Cas9, CRISPR-Cpf1, and CRISPR-C2c1), and RNA-dependent RNA cleavage systems (i.e., RNA interference, RNAi, and CRISPR-C2c2). All these techniques can lead to double-stranded (DSB) or single-stranded breaks (SSB), and result in either random mutations via non-homologous end-joining (NHEJ) or targeted mutation via homologous recombination (HR). Thus, site-directed mutagenesis can be induced via targeted gene knock-out, knock-in, or replacement to modify specific characteristics including morphology-modification, resistance-enhancement, and physiological mechanism-improvement along with plant growth and development. In this paper, an non-comprehensive review on the development of different GETs as applied to plants is presented.

15.
Front Plant Sci ; 8: 745, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536594

RESUMO

Vicinal oxygen chelate proteins (VOC) are members of the metalloenzyme superfamily, which plays roles in many biological reactions. Some members of the VOC superfamily have been systematically characterized but not in Brassica napus. In this study, 38 VOC genes were identified based on their conserved domains. The present results revealed that most of the BnaVOC genes have few introns, and all contained the typical VOC structure of ßαßßß modules. The BnaVOC genes are distributed unevenly across 15 chromosomes in B. napus and occur as gene clusters on chromosomes C5 and A6. The synteny and phylogenetic analyses revealed that the VOC gene family is a consequence of mesopolyploidy events that occurred in Brassica evolution, and whole-genome duplication and segmental duplication played a major role in the expansion of the BnaVOC gene family. The expression profile analysis indicated that the expression of most BnaVOCs was increased in the leaves and late stage seeds. Further results indicated that seeds of B. napus with a high oil content show higher expression levels under drought stress conditions, suggesting that BnaVOCs not only respond to abiotic stress but may also affect lipid metabolism in drought stress. This present study provides a comprehensive overview of the VOC gene family and provides new insights into their biological function in B. napus evolution.

16.
Sci Rep ; 7: 46295, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393910

RESUMO

High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed.


Assuntos
Brassica napus/química , Brassica napus/genética , Óleos de Plantas/análise , Proteínas de Plantas/análise , Sementes/química , Sementes/genética , Variação Biológica da População , Brassica napus/metabolismo , Mapeamento Cromossômico , Estudos de Associação Genética , Ligação Genética , Redes e Vias Metabólicas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável
17.
Sci Rep ; 6: 24265, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27072743

RESUMO

Late embryogenesis abundant (LEA) proteins are a diverse and large group of polypeptides that play important roles in desiccation and freezing tolerance in plants. The LEA family has been systematically characterized in some plants but not Brassica napus. In this study, 108 BnLEA genes were identified in the B. napus genome and classified into eight families based on their conserved domains. Protein sequence alignments revealed an abundance of alanine, lysine and glutamic acid residues in BnLEA proteins. The BnLEA gene structure has few introns (<3), and they are distributed unevenly across all 19 chromosomes in B. napus, occurring as gene clusters in chromosomes A9, C2, C4 and C5. More than two-thirds of the BnLEA genes are associated with segmental duplication. Synteny analysis revealed that most LEA genes are conserved, although gene losses or gains were also identified. These results suggest that segmental duplication and whole-genome duplication played a major role in the expansion of the BnLEA gene family. Expression profiles analysis indicated that expression of most BnLEAs was increased in leaves and late stage seeds. This study presents a comprehensive overview of the LEA gene family in B. napus and provides new insights into the formation of this family.


Assuntos
Brassica napus/genética , Genoma de Planta , Mapeamento Cromossômico , Cromossomos de Plantas , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Filogenia
18.
Front Plant Sci ; 7: 1482, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822216

RESUMO

The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus.

19.
Front Plant Sci ; 7: 1403, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708656

RESUMO

Brassica napus is one of the most important oilseed crops in the world. However, there is currently no enough stem transcriptome information and comparative transcriptome analysis of different tissues, which impedes further functional genomics research on B. napus. In this study, the stem transcriptome of B. napus was characterized by RNA-seq technology. Approximately 13.4 Gb high-quality clean reads with an average length of 100 bp were generated and used for comparative transcriptome analysis with the existing transcriptome sequencing data of roots, leaves, flower buds, and immature embryos of B. napus. All the transcripts were annotated against GO and KEGG databases. The common genes in five tissues, differentially expressed genes (DEGs) of the common genes between stems and other tissues, and tissue-specific genes were detected, and the main biochemical activities and pathways implying the common genes, DEGs and tissue-specific genes were investigated. Accordingly, the common transcription factors (TFs) in the five tissues and tissue-specific TFs were identified, and a TFs-based regulation network between TFs and the target genes involved in 'Phenylpropanoid biosynthesis' pathway were constructed to show several important TFs and key nodes in the regulation process. Collectively, this study not only provided an available stem transcriptome resource in B. napus, but also revealed valuable comparative transcriptome information of five tissues of B. napus for future investigation on specific processes, functions and pathways.

20.
PLoS One ; 10(6): e0129650, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26065422

RESUMO

Acyl-coA binding proteins could transport acyl-coA esters from plastid to endoplasmic reticulum, prior to fatty acid biosynthesis, leading to the formation of triacylglycerol. The structure and the subcellular localization of acyl-coA binding proteins (ACBP) in Brassica napus were computationally predicted in this study. Earlier, the structure analysis of ACBPs was limited to the small ACBPs, the current study focused on all four classes of ACBPs. Physicochemical parameters including the size and the length, the intron-exon structure, the isoelectric point, the hydrophobicity, and the amino acid composition were studied. Furthermore, identification of conserved residues and conserved domains were carried out. Secondary structure and tertiary structure of ACBPs were also studied. Finally, subcellular localization of ACBPs was predicted. The findings indicated that the physicochemical parameters and subcellular localizations of ACBPs in Brassica napus were identical to Arabidopsis thaliana. Conserved domain analysis indicated that ACBPs contain two or three kelch domains that belong to different families. Identical residues in acyl-coA binding domains corresponded to eight amino acid residues in all ACBPs of B. napus. However, conserved residues of common ACBPs in all species of animal, plant, bacteria and fungi were only inclusive in small ACBPs. Alpha-helixes were displayed and conserved in all the acyl-coA binding domains, representing almost the half of the protein structure. The findings confirm high similarities in ACBPs between A. thaliana and B. napus, they might share the same functions but loss or gain might be possible.


Assuntos
Brassica napus/química , Inibidor da Ligação a Diazepam/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Brassica napus/metabolismo , Sequência Conservada , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/genética , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA