Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 68, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046250

RESUMO

BACKGROUND: This study aimed to isolate a novel thermotolerant bacterium that is capable of synthesizing polyhydroxyalkanoate from glycerol under high temperature conditions. RESULTS: A newly thermotolerant polyhydroxyalkanoate (PHA) producing bacterium, Cupriavidus sp. strain CB15, was isolated from corncob compost. The potential ability to synthesize PHA was confirmed by detection of PHA synthase (phaC) gene in the genome. This strain could produce poly(3-hydroxybutyrate) [P(3HB)] with 0.95 g/L (PHA content 75.3 wt% of dry cell weight 1.24 g/L) using glycerol as a carbon source. The concentration of PHA was enhanced and optimized based on one-factor-at-a-time (OFAT) experiments and response surface methodology (RSM). The optimum conditions for growth and PHA biosynthesis were 10 g/L glycerol, 0.78 g/L NH4Cl, shaking speed at 175 rpm, temperature at 45 °C, and cultivation time at 72 h. Under the optimized conditions, PHA production was enhanced to 2.09 g/L (PHA content of 74.4 wt% and dry cell weight of 2.81 g/L), which is 2.12-fold compared with non-optimized conditions. Nuclear magnetic resonance (NMR) analysis confirmed that the extracted PHA was a homopolyester of 3-hydyoxybutyrate. CONCLUSION: Cupriavidus sp. strain CB15 exhibited potential for cost-effective production of PHA from glycerol.


Assuntos
Compostagem , Cupriavidus necator , Cupriavidus , Poli-Hidroxialcanoatos , Cupriavidus/genética , Cupriavidus/metabolismo , Glicerol/metabolismo , Temperatura , Cupriavidus necator/genética , Cupriavidus necator/metabolismo
2.
Prep Biochem Biotechnol ; : 1-10, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747818

RESUMO

Coffee pulp (CP), a by-product of coffee production, is an underutilized resource with significant potential value. CP contains monosaccharides that can serve as an ideal carbon source for bacterial cultivation, enabling the production of value-added components such as medical-grade cellulose. Herein, we extracted the sugar fraction from Arabica CP and used it as a supplement in a growing media of a bacteria cellulose (BC), Komagataeibacter nataicola. The BC was then characterized and tested for cytotoxicity. The CP sugar fraction yielded approximately 7% (w/w) and contained glucose at 4.52 mg/g extract and fructose at 7.34 mg/g extract. Supplementing the sugar fraction at different concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) in sterilized glucose yeast extract broth, the highest yield of cellulose (0.0020 g) occurred at 0.3 g/10 mL. It possessed similar physicochemical attributes to the BC using glucose, with some notable improvements in fine structure and arrangement of the functional groups. In cytotoxicity assessments on HaCaT keratinocyte cells, bacterial cellulose concentrations of 2-1000 µg/mL exhibited viability of ≥ 80%. However, higher concentrations were toxic. This research innovatively uses coffee pulp for bacterial cellulose, aligning with the principles of a bio-circular economy that focuses on sustainable biomass utilization.


The sugar fraction of Arabica CP (6.64 g/100 g sample) contained glucose and fructose of 4.52 and 7.34 mg/g extract respectively.Different sugar fraction concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) were tested in sterilized glucose yeast extract broth. Optimal BC yield (0.0020 g) was achieved at 0.3 g/10 mL.The BC exhibited comparable physicochemical characteristics to cellulose obtained from glucose.The cytotoxicity indicate that HaCaT cells exposed to 2­1000 µg/mL of BC had a percentage cell viability of ≥80%, but it was toxic at higher concentrations.CP represents a cheap and readily-available source for BC production, contributing to the bio-circular economic goal.

3.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36142460

RESUMO

The nano-metal-treated PET films with anti-virus and anti-fogging ability were developed using sparking nano-metal particles of Ag, Zn, and Ti wires on polyethylene terephthalate (PET) films. Ag nanoparticles were detected on the PET surface, while a continuous aggregate morphology was observed with Zn and Ti sparking. The color of the Ag-PET films changed to brown with increasing repeat sparking times, but not with the Zn-PET and Ti-PET films. The water contact angle of the nano-metal-treated PET films decreased with increasing repeat sparking times. The RT-PCR anti-virus test confirmed the high anti-virus efficiency of the nano-metal-treated PET films due to the fine particle distribution, high polarity, and binding of the nano-metal ions to the coronavirus, which was destroyed by heat after UV irradiation. A highly transparent, anti-fogging, and anti-virus face shield was prepared using the Zn-PET film. Sparking was an effective technique to prepare the alternative anti-virus and anti-fogging films for medical biomaterial applications because of their low cost, convenience, and fast processing.


Assuntos
Coronavirus , Nanopartículas Metálicas , Materiais Biocompatíveis/química , Nanopartículas Metálicas/química , Polietilenotereftalatos/química , Prata/química , Propriedades de Superfície , Água
4.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630777

RESUMO

Phytocannabinoids are isoprenylated resorcinyl polyketides produced mostly in glandular trichomes of Cannabis sativa L. These discoveries led to the identification of cannabinoid receptors, which modulate psychotropic and pharmacological reactions and are found primarily in the human central nervous system. As a result of the biogenetic process, aliphatic ketide phytocannabinoids are exclusively found in the cannabis species and have a limited natural distribution, whereas phenethyl-type phytocannabinoids are present in higher plants, liverworts, and fungi. The development of cannabinomics has uncovered evidence of new sources containing various phytocannabinoid derivatives. Phytocannabinoids have been isolated as artifacts from their carboxylated forms (pre-cannabinoids or acidic cannabinoids) from plant sources. In this review, the overview of the phytocannabinoid biosynthesis is presented. Different non-cannabis plant sources are described either from those belonging to the angiosperm species and bryophytes, together with their metabolomic structures. Lastly, we discuss the legal framework for the ingestion of these biological materials which currently receive the attention as a legal high.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Agonistas de Receptores de Canabinoides , Canabinoides/química , Cannabis/química , Humanos , Espectrometria de Massas , Metabolômica
5.
Molecules ; 27(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268636

RESUMO

Oily skin from overactive sebaceous glands affects self-confidence and personality. There is report of an association between steroid 5-alpha reductase gene (SRD5A) expression and facial sebum production. There is no study of the effect of Asparagus racemosus Willd. root extract on the regulation of SRD5A mRNA expression and anti-sebum efficacy. This study extracted A. racemosus using the supercritical carbon dioxide fluid technique with ethanol and investigated its biological compounds and activities. The A. racemosus root extract had a high content of polyphenolic compounds, including quercetin, naringenin, and p-coumaric acid, and DPPH scavenging activity comparable to that of the standard L-ascorbic acid. A. racemosus root extract showed not only a significant reduction in SRD5A1 and SRD5A2 mRNA expression by about 45.45% and 90.86%, respectively, but also a reduction in the in vivo anti-sebum efficacy in male volunteers, with significantly superior percentage changes in facial sebum production and a reduction in the percentages of pore area after 15 and 30 days of treatment. It can be concluded that A. racemosus root extract with a high content of polyphenol compounds, great antioxidant effects, promising downregulation of SRD5A1 and SRD5A2, and predominant facial sebum reduction and pore-minimizing efficacy could be a candidate for an anti-sebum and pore-minimizing active ingredient to serve in functional cosmetic applications.


Assuntos
Asparagus , Dióxido de Carbono , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Asparagus/química , Dióxido de Carbono/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sebo
6.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056648

RESUMO

Carboxymethyl rice starch films were prepared from carboxymethyl rice starch (CMSr) treated with sodium hydroxide (NaOH) at 10-50% w/v. The objective of this research was to determine the effect of NaOH concentrations on morphology, mechanical properties, and water barrier properties of the CMSr films. The degree of substitution (DS) and morphology of native rice starch and CMSr powders were examined. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to investigate the chemical structure, crystallinity, and thermal properties of the CMSr films. As the NaOH concentrations increased, the DS of CMSr powders increased, which affected the morphology of CMSr powders; a polyhedral shape of the native rice starch was deformed. In addition, the increase in NaOH concentrations of the synthesis of CMSr resulted in an increase in water solubility, elongation at break, and water vapor permeability (WVP) of CMSr films. On the other hand, the water contact angle, melting temperature, and the tensile strength of the CMSr films decreased with increasing NaOH concentrations. However, the tensile strength of the CMSr films was relatively low. Therefore, such a property needs to be improved and the application of the developed films should be investigated in the future work.


Assuntos
Oryza/química , Hidróxido de Sódio/química , Amido/análogos & derivados , Vapor , Temperatura , Resistência à Tração , Permeabilidade , Solubilidade , Amido/química , Amido/metabolismo
7.
Molecules ; 26(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919710

RESUMO

In recent years, instead of the use of chemical substances, alternative substances, especially plant extracts, have been characterized for an active packaging of antibacterial elements. In this study, the peels of mangosteen (Garcinia mangostana), rambutan (Nephelium lappaceum), and mango (Mangifera indica) were extracted to obtain bioactive compound by microwave-assisted extraction (MAE) and maceration with water, ethanol 95% and water-ethanol (40:60%). All extracts contained phenolics and flavonoids. However, mangosteen peel extracted by MAE and maceration with water/ethanol (MT-MAE-W/E and MT-Ma-W/E, respectively) contained higher phenolic and flavonoid contents, and exhibited greater antibacterial activity against Staphylococcus aureus and Escherichia coli. Thus, both extracts were analyzed by liquid chromatograph-mass spectrometer (LC-MS) analysis, α-mangostin conferring antibacterial property was found in both extracts. The MT-MAE-W/E and MT-Ma-W/E films exhibited 30.22 ± 2.14 and 30.60 ± 2.83 mm of growth inhibition zones against S. aureus and 26.50 ± 1.60 and 26.93 ± 3.92 mm of growth inhibition zones against E. coli. These clear zones were wider than its crude extract approximately 3 times, possibly because the film formulation enhanced antibacterial activity with sustained release of active compound. Thus, the mangosteen extracts have potential to be used as an antibacterial compound in active packaging.


Assuntos
Antibacterianos/farmacologia , Frutas/química , Derivados da Hipromelose/química , Extratos Vegetais/química , Embalagem de Produtos , Escherichia coli/efeitos dos fármacos , Flavonoides/análise , Garcinia mangostana/química , Mangifera/química , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Micro-Ondas , Fenóis/análise , Quercetina/química , Sapindaceae/química , Staphylococcus aureus/efeitos dos fármacos , Xantonas/análise , Xantonas/química
8.
Molecules ; 26(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922836

RESUMO

Targeting tyrosinase for melanogenesis disorders is an established strategy. Hydroxyl-substituted benzoic and cinnamic acid scaffolds were incorporated into new chemotypes that displayed in vitro inhibitory effects against mushroom and human tyrosinase for the purpose of identifying anti-melanogenic ingredients. The most active compound 2-((4-methoxyphenethyl)amino)-2-oxoethyl (E)-3-(2,4-dihydroxyphenyl) acrylate (Ph9), inhibited mushroom tyrosinase with an IC50 of 0.059 nM, while 2-((4-methoxyphenethyl)amino)-2-oxoethyl cinnamate (Ph6) had an IC50 of 2.1 nM compared to the positive control, kojic acid IC50 16700 nM. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound (Ph9) and Ph6 exhibited 94.6% and 92.2% inhibitory activity respectively while the positive control kojic acid showed 72.9% inhibition. Enzyme kinetics reflected a mixed type of inhibition for inhibitor Ph9 (Ki 0.093 nM) and non-competitive inhibition for Ph6 (Ki 2.3 nM) revealed from Lineweaver-Burk plots. In silico docking studies with mushroom tyrosinase (PDB ID:2Y9X) predicted possible binding modes in the catalytic site for these active compounds. Ph9 displayed no PAINS (pan-assay interference compounds) alerts. Our results showed that compound Ph9 is a potential candidate for further development of tyrosinase inhibitors.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Relação Estrutura-Atividade
9.
Molecules ; 26(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34641556

RESUMO

This study investigated the effect of chitosan particle sizes on the properties of carboxymethyl chitosan (CMCh) powders and films. Chitosan powders with different particle sizes (75, 125, 250, 450 and 850 µm) were used to synthesize the CMCh powders. The yield, degree of substitution (DS), and water solubility of the CMCh powders were then determined. The CMCh films prepared with CMCh based on chitosan with different particle sizes were fabricated by a solution casting technique. The water solubility, mechanical properties, and water vapor transmission rate (WVTR) of the CMCh films were measured. As the chitosan particle size decreased, the yield, DS, and water solubility of the synthesized CMCh powders increased. The increase in water solubility was due to an increase in the polarity of the CMCh powder, from a higher conversion of chitosan into CMCh. In addition, the higher conversion of chitosan was also related to a higher surface area in the substitution reaction provided by chitosan powder with a smaller particle size. As the particle size of chitosan decreased, the tensile strength, elongation at break, and WVTR of the CMCh films increased. This study demonstrated that a greater improvement in water solubility of the CMCh powders and films can be achieved by using chitosan powder with a smaller size.

10.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210135

RESUMO

This study was aimed at creating new films and determine some functional packaging properties of pectin:nanochitosan films with ratios of pectin:nanochitosan (P:NSC) of 100:0; 75:25; 50:50; 25:75 and 0:100 (%w/w). The effects of the proportions of pectin:nanochitosan incorporation on the thickness, mechanical properties, water vapor permeability, water-solubility, and oxygen permeability were investigated. The microstructural studies were done using scanning electron microscopy (SEM). The interactions between pectin and nanochitosan were elucidated by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results showed that the blending of pectin with nanochitosan at proportions of 50:50 increased the tensile strength to 8.96 MPa, reduced the water solubility to 37.5%, water vapor permeability to 0.2052 g·mm/m2·day·kPa, and the oxygen permeability to 47.67 cc·mm/m2·day. The results of the contact angle test indicated that P:NCS films were hydrophobic, especially, pectin:nanochitosan films inhibited the growth of Colletotrichum gloeosporioides, Saccharomyces cerevisiae, Aspergillus niger, and Escherichia coli. So, P:NCS films with a proportion of 50:50 can be used as active films to extend the shelf life of food.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Quitosana/química , Filmes Comestíveis , Nanoestruturas , Pectinas/química , Fenômenos Químicos , Fenômenos Mecânicos , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Molecules ; 25(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560165

RESUMO

Generally, natural rubber/chitosan (NR/CT) biocomposites could be prepared by either mixing natural rubber latex (NRL) with CT acid solution or mixing dry NR with CT powder on mixing equipment. In the present work, a new mixing method has been proposed and properties of the obtained NR/CT biocomposites are investigated. CT particles were prepared to have a negative charge that could be dispersed in water by using a ball mill before mixing with NRL. The effects of CT loading varied from 0 to 8 phr on latex properties and physical properties of NR/CT biocomposite films were focused. The results showed that the viscosity of NRL increased with increasing CT loading. With increasing CT loading from 0 to 8 phr, 300% modulus of the NR/CT biocomposite film increased, whereas the opposite trend was found for elongation at break. Additionally, the presence of CT in the biocomposite resulted in an increased elastic modulus (E') in conjunction with enhanced antibacterial activity against Staphylococcus aureus (S. aureus).


Assuntos
Antibacterianos , Quitosana , Látex , Nanopartículas/química , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacologia , Látex/química , Látex/farmacologia
12.
Sci Rep ; 14(1): 16174, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003398

RESUMO

Three-dimensional (3D) printing serves as an alternative method for fabricating microneedle (MN) patches with a high object resolution. In this investigation, four distinct needle shapes: pyramid mounted over a long cube (shape A), cone mounted over a cylinder (shape B), pyramidal shape (shape C), and conical shape (shape D) were designed using computer-aided design (CAD) software with compensated bases of 350, 450 and 550 µm. Polylactic acid (PLA) biophotopolymer resin from eSun and stereolithography (SLA) 3D printer from Anycubic technology were used to print MN patches. The 3D-printed MN patches were employed to construct MN molds, and those molds were used to produce hydroxypropyl methylcellulose (HPMC) and polyvinyl pyrrolidone (PVP) K90 dissolving microneedles (DMNs). Various printing parameters, such as curing time, printing angle, and anti-aliasing (AA), were varied to evaluate suitable printing conditions for each shape. Furthermore, physical appearance, mechanical property, and skin insertion ability of HPMC/PVP K90 DMNs were examined. The results showed that for shape A and C, the suitable curing time and printing angle were 1.5 s and 30° while for shapes B and D, they were 2.0 s and 45°, respectively. All four shapes required AA to eliminate their stair-stepped edges. Additionally, it was demonstrated that all twelve designs of 3D-printed MN patches could be employed for fabricating MN molds. HPMC/PVP K90 DMNs with the needles of shape A and B exhibited better physicochemical properties compared to those of shape C and D. Particularly, both sample 9 and 10 displayed sharp needle without bent tips, coupled with minimal height reduction (< 10%) and a high percentage of blue dots (approximately 100%). As a result, 3D printing can be utilized to custom construct 3D-printed MN patches for producing MN molds, and HPMC/PVP K90 DMNs manufactured by those molds showed excellent physicochemical properties.

13.
Foods ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672902

RESUMO

Coffee silverskin (CS), a by-product of the coffee roasting process, has high protein content (16.2-19.0%, w/w), making it a potential source for plant protein and bioactive peptide production. This study aims to develop innovative extraction methods for phenolic compounds and proteins from CS. The conditions for hydrothermal (HT) extraction of phenolic compounds from CS were optimized by varying CS loading (2.5-10%, w/v), temperature (110-130 °C), and time (5-30 min) using a one-factor-at-a-time (OFAT) approach. The highest TPC of 55.59 ± 0.12 µmole GAE/g CS was achieved at 5.0% (w/v) CS loading and autoclaving at 125 °C for 25 min. Following hydrothermal extraction, CS protein was extracted from HT-extracted solid fraction by microwave-assisted alkaline extraction (MAE) using 0.2 M NaOH at 90 W for 2 min, resulting in a protein recovery of 12.19 ± 0.39 mg/g CS. The CS protein was then subjected to enzymatic hydrolysis using protease from Bacillus halodurans SE5 (protease_SE5). Protease_SE5-derived CS protein hydrolysate had a peptide concentration of 0.73 ± 0.09 mg/mL, with ABTS, DPPH, and FRAP values of 15.71 ± 0.10, 16.63 ± 0.061, and 6.48 ± 0.01 µmole TE/mL, respectively. Peptide identification by LC-MS/MS revealed several promising biological activities without toxicity or allergenicity concerns. This study's integrated approach offers a sustainable and efficient method for extracting valuable compounds from CS, with potential applications in the food and pharmaceutical industries.

14.
Int J Biol Macromol ; 256(Pt 1): 128425, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008136

RESUMO

In this study, the efficacy of ionomers and poly-lactic acid (PLA) as an alternative solid material combined with scFv antibodies specific to bovine Y-sperm (Y-scFv) was studied to create a novel method of sexing technology. The coupling efficiency of Y-scFv to the surface of PLA, Na+ and Zn2+ ionomer film was between 2 and 8 mg/mL. Fourier transform infrared spectra confirm that Y-scFv was bound with a carboxylic acid group in each film. Therefore, Na+, Zn2+ ionomers and PLA films conjugated with 4 and 8 mg/mL Y-scFv showed the highest concentration of Y-sperm in the eluted fraction. Considering that the elute fraction was enriched Y-sperm fraction, it contained 67.70-77.94 % of the Y-sperm ratio related to the produced supernatant fraction, which contained up to 69.31-76.01 % enriched X-sperm. In addition, the sperm quality after the sexing process was analyzed by CASA and imaging flow cytometry, which showed that each polymer did not have a negative effect on sperm motility and acrosome integrity for X-sperm. The capacity of ionomer and PLA combined with Y-scFv are used for bovine sperm sexing.


Assuntos
Cromossomo X , Cromossomo Y , Bovinos , Masculino , Animais , Separação Celular/métodos , Pré-Seleção do Sexo/métodos , Motilidade dos Espermatozoides , Sêmen , Citometria de Fluxo/métodos , Espermatozoides , Poliésteres , Ácido Láctico
15.
Polymers (Basel) ; 16(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000736

RESUMO

The present study aimed to extract nanocellulose (NC) from sugarcane bagasse agricultural waste through a chemical method (sulfuric acid hydrolysis and ultrasonication). Subsequently, the nanocellulose product was conjugated with polylysine (NC-PL) and assessed for its efficacy in reducing the toxicity of Fumonisin B1 (FB1), a mycotoxin produced by fungi commonly found in corn, wheat, and other grains. Experimental results confirmed the successful conjugation of NC and PL, as evidenced by FTIR peaks at 1635 and 1625 cm-1 indicating amide I and amide II vibrations in polylysine (PL). SEM analysis revealed a larger size due to PL coating, consistent with DLS results showing the increased size and positive charge (38.0 mV) on the NC-PL surface. Moreover, the effect of FB1 adsorption by NC and NC-PL was evaluated at various concentrations (0-200,000 µg/mL). NC-PL demonstrated the ability to adsorb FB1 at concentrations of 2000, 20,000, and 200,000 µg/mL, with adsorption efficiencies of 94.4-100%. Human hepatocellular carcinoma (HepG2) cells were utilized to assess NC and NC-PL cytotoxic effects. This result is a preliminary step towards standardizing results for future studies on their application as novel FB1 binders in food, food packaging, and functional feeds.

16.
Polymers (Basel) ; 16(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000742

RESUMO

This research aimed to produce eco-friendly straws using soy protein isolate (SPI) and cassava starch (CS) at different ratios by the extrusion technique and by coating with beeswax and shellac wax. Three straw formulations (F) (F1: 24.39% SPI-24.39% CS; F2: 19.51% SPI-29.37% CS; and F3: 14.63% SPI-34.15% CS) were prepared, incorporating glycerol (14.6% w/w) and water (36.6% w/w). After extrusion and drying at 80 °C for 20 h, visual assessment favored F2 straws due to smoother surfaces, the absence of particles, and enhanced straightness. For the physical property test, the straws were softened in pH buffer solutions for 5 min. To simulate practical application, mechanical bending strength was studied under different relative humidity (RH) settings. Water absorption reduced the strength as RH increased. F2 straws outperformed other formulations in bending strength at 54% RH. For hydrophobic coatings, F2 was chosen. Beeswax- and shellac wax-coated straws displayed negligible water absorption and sustained their integrity for over 6 h compared to uncoated straws. This study shows that extrusion and natural coatings may make sustainable straws from SPI and CS. These efforts help meet the growing demand for eco-friendly plastic alternatives, opening up new options for single-use straws.

17.
Int J Biol Macromol ; 270(Pt 2): 132380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754656

RESUMO

Clean water and sanitation issues motivate researchers to develop water evaporators for freshwater generation. The composite membrane evaporator was electrospun herein based on poly(lactic acid) (PLA) and Ti3AlC2 MAX phase as a property enhancer. As a precursor for the MXenes synthesis, the MAX phase has never been explored with PLA for water evaporator potential. Alternative use of the MAX phase can reduce the production cost arising from chemical synthesis. This work explored the potential of the MAX phase as an additive to enhance PLA membrane performance for steam generation and desalination applications. Under the infrared irradiation (∼1.0 kW/m2), the mechanically-improved PLA/MAX phase membrane showed an enhanced water evaporation rate of 1.70 kg/m2 h (93.93 % efficiency), with an approximately 52 % rate increment relative to the PLA membrane. Based on the artificial seawater (3.5 % w/w), the membrane exhibited an evaporation rate of 1.60 kg/m2 h (87.57 % efficiency). The membrane showed self-floating ability at the air-water interface, excellent thermal stability over the entire operating temperatures, and reusability after repeated cycles. Moreover, the generated freshwater contained exceptionally low cations concentrations, as low as those in potable water. The developed composite membrane also had proved its potential for solar desalination in the water generation field.


Assuntos
Membranas Artificiais , Poliésteres , Vapor , Titânio , Purificação da Água , Poliésteres/química , Titânio/química , Purificação da Água/métodos , Luz Solar
18.
Plants (Basel) ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999635

RESUMO

Prolonged exposure to environmental oxidative stress can result in visible signs of skin aging such as wrinkles, hyperpigmentation, and thinning of the skin. Oryza sativa variety Sang 5 CMU, an inbred rice cultivar from northern Thailand, contains phenolic and flavonoid compounds in its bran and husk portions that are known for their natural antioxidant properties. In this study, we evaluated the cosmetic properties of crude extracts from rice bran and husk of Sang 5 CMU, focusing on antioxidant, anti-inflammatory, anti-melanogenesis, and collagen-regulating properties. Our findings suggest that both extracts possess antioxidant potential against DPPH, ABTS radicals, and metal ions. Additionally, they could downregulate TBARS levels from 125% to 100% of the control, approximately, while increasing the expression of genes related to the NRF2-mediated antioxidant pathway, such as NRF2 and HO-1, in H2O2-induced human fibroblast cells. Notably, rice bran and husk extracts could increase mRNA levels of HO-1 more greatly than the standard L-ascorbic acid, by about 1.29 and 1.07 times, respectively. Furthermore, the crude extracts exhibited anti-inflammatory activity by suppressing nitric oxide production in both mouse macrophage and human fibroblast cells. Specifically, the bran and husk extracts inhibited the gene expression of the inflammatory cytokine IL-6 in LPS-induced inflammation in fibroblasts. Moreover, both extracts demonstrated potential for inhibiting melanin production and intracellular tyrosinase activity in human melanoma cells by decreasing the expression of the transcription factor MITF and the pigmentary genes TYR, TRP-1, and DCT. They also exhibit collagen-stimulating effects by reducing MMP-2 expression in H2O2-induced fibroblasts from 135% to 80% of the control, approximately, and increasing the gene associated with type I collagen production, COL1A1. Overall, the rice bran and husk extracts of Sang 5 CMU showed promise as effective natural ingredients for cosmetic applications.

19.
Int J Biol Macromol ; 273(Pt 2): 133119, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880452

RESUMO

Ethyl cellulose (EC)-based composite sponges were developed for oil spillage treatment. The EC sponge surface was decorated with helical carbon nanotubes (HCNTs) and molybdenum disulfide (MoS2) (1 phr) using the inside-out sugar templating method. The inside surface of a sugar cube was coated with HCNTs and MoS2. After filling the sugar cube pores with EC and the subsequent sugar leaching, the decorating materials presented on the sponge surface. The EC/HCNT/MoS2 sponge had a high level of oil removal based on its adsorption capacity (41.68 g/g), cycled adsorption (∼75-79 %), separation flux efficiency (∼85-95 %), and efficiency in oil/water emulsion separation (92-94 %). The sponge maintained adsorption capacity in acidic, basic, and salty conditions, adsorbed oil under water, and functioned as an oil/water separator in a continuous pump-assisted system. The compressive stress and Young's modulus of the EC sponge increased following its decoration using HCNTs and MoS2. The composite sponge was robust based on cycled compression and was thermally stable up to ∼120 οC. Based on the eco-friendliness of EC, the low loading of HCNTs and MoS2, and sponge versatility, the developed EC/HCNT/MoS2 sponge should be good candidate for use in sustainable oil adsorption and separation applications.


Assuntos
Celulose , Dissulfetos , Molibdênio , Nanotubos de Carbono , Celulose/química , Celulose/análogos & derivados , Dissulfetos/química , Nanotubos de Carbono/química , Adsorção , Molibdênio/química , Água/química , Óleos/química , Purificação da Água/métodos
20.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000654

RESUMO

Anti-inflammatory wound healing involves targeted drug delivery to the wound site using hydrogel materials to prolong drug effectiveness. In this work, hydrogel films were fabricated using carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) crosslinked with citric acid (CA) and glutaraldehyde (GA) at different concentrations. The crosslinker densities were optimized with various CA (2-10% w/v) and GA (1-5% v/v) concentrations. The optimized crosslink densities in the hydrogel exhibited additional functional group peaks in the FT-IR spectra at 1740 cm-1 for the C=O stretching of the ester linkage in CA and at 1060 cm-1 for the C-O-C stretching of the ether group in GA. Significantly, the internal porous structures of hydrogel composite films improved density, swelling capacities, solubility percentage reduction, and decreased water retention capacities with optimized crosslinker densities. Therefore, these hydrogel composite films were utilized as drug carriers for controlled drug release within 24 h during medical treatment. Moreover, the hydrogel films demonstrated increased triamcinolone acetonide (TAA) absorption with higher crosslinker density, resulting in delayed drug release and improved TAA efficiency in anti-inflammatory activity. As a result, the modified hydrogel showed the capability of being an alternative material with enhanced anti-inflammatory efficiency with hydrogel films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA