Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
J Clin Immunol ; 42(6): 1137-1150, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713752

RESUMO

Immune responses to coronavirus disease 2019 (COVID-19) mRNA vaccines in primary antibody deficiencies (PADs) are largely unknown. We investigated antibody and CD4+ T-cell responses specific for SARS-CoV-2 spike protein (S) before and after vaccination and associations between vaccine response and patients' clinical and immunological characteristics in PADs. The PAD cohort consisted of common variable immune deficiency (CVID) and other PADs, not meeting the criteria for CVID diagnosis (oPADs). Anti-S IgG, IgA, and IgG subclasses 1 and 3 increased after vaccination and correlated with neutralization activity in HCs and patients with oPADs. However, 42% of CVID patients developed such responses after the 2nd dose. A similar pattern was also observed with S-specific CD4+ T-cells as determined by OX40 and 4-1BB expression. Patients with poor anti-S IgG response had significantly lower levels of baseline IgG, IgA, CD19+ B-cells, switched memory B-cells, naïve CD8+ T-cells, and a higher frequency of EM CD8+ T-cells and autoimmunity compared to patients with adequate anti-S IgG responses. Patients with oPADs can develop humoral and cellular immune responses to vaccines similar to HCs. However, a subset of CVID patients exhibit impairment in developing such responses, which can be predicted by the baseline immune profile and history of autoimmunity.


Assuntos
COVID-19 , Imunodeficiência de Variável Comum , Doenças da Imunodeficiência Primária , Vacinas , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunodeficiência de Variável Comum/diagnóstico , Humanos , Imunidade Celular , Imunoglobulina A , Imunoglobulina G , RNA Mensageiro , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
2.
Mult Scler ; 28(1): 7-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32808554

RESUMO

Dimethyl fumarate (DMF), a fumaric acid with antioxidant and immunomodulatory properties, is among the most commonly used oral therapies for relapsing multiple sclerosis (MS). Progressive multifocal leukoencephalopathy (PML) has been associated with several disease-modifying therapies (DMTs), including DMF in treating MS. We present detailed clinical characteristics of nine PML cases and show that the PML incidence in DMF-treated patients is 0.02 per 1000 patients. In addition to persistent severe lymphopenia, older age appears to be a potential risk for PML. However, younger patients without lymphopenia were also observed to develop PML. DMF-associated PML has occurred in patients with absolute lymphocyte counts (ALCs) above the guideline threshold, suggesting that changes in specific subsets might be more important than total ALC. Furthermore, since DMF has been found to decrease immune cell migration by decreasing the expression of adhesive molecules, the cerebrospinal fluid (CSF) immune profile may also be useful for assessing PML risk in DMF-treated patients. This review provides an up-to-date assessment of PML cases occurring in DMF-treated patients and discusses other potential considerations in light of our current understanding of DMF's mechanism of action on the immune system in the periphery and in the central nervous system (CNS).


Assuntos
Leucoencefalopatia Multifocal Progressiva , Linfopenia , Esclerose Múltipla , Idoso , Fumarato de Dimetilo/efeitos adversos , Humanos , Imunossupressores/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente
3.
N Engl J Med ; 379(9): 846-855, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30157388

RESUMO

BACKGROUND: There are limited treatments for progressive multiple sclerosis. Ibudilast inhibits several cyclic nucleotide phosphodiesterases, macrophage migration inhibitory factor, and toll-like receptor 4 and can cross the blood-brain barrier, with potential salutary effects in progressive multiple sclerosis. METHODS: We enrolled patients with primary or secondary progressive multiple sclerosis in a phase 2 randomized trial of oral ibudilast (≤100 mg daily) or placebo for 96 weeks. The primary efficacy end point was the rate of brain atrophy, as measured by the brain parenchymal fraction (brain size relative to the volume of the outer surface contour of the brain). Major secondary end points included the change in the pyramidal tracts on diffusion tensor imaging, the magnetization transfer ratio in normal-appearing brain tissue, the thickness of the retinal nerve-fiber layer, and cortical atrophy, all measures of tissue damage in multiple sclerosis. RESULTS: Of 255 patients who underwent randomization, 129 were assigned to ibudilast and 126 to placebo. A total of 53% of the patients in the ibudilast group and 52% of those in the placebo group had primary progressive disease; the others had secondary progressive disease. The rate of change in the brain parenchymal fraction was -0.0010 per year with ibudilast and -0.0019 per year with placebo (difference, 0.0009; 95% confidence interval, 0.00004 to 0.0017; P=0.04), which represents approximately 2.5 ml less brain-tissue loss with ibudilast over a period of 96 weeks. Adverse events with ibudilast included gastrointestinal symptoms, headache, and depression. CONCLUSIONS: In a phase 2 trial involving patients with progressive multiple sclerosis, ibudilast was associated with slower progression of brain atrophy than placebo but was associated with higher rates of gastrointestinal side effects, headache, and depression. (Funded by the National Institute of Neurological Disorders and Stroke and others; NN102/SPRINT-MS ClinicalTrials.gov number, NCT01982942 .).


Assuntos
Encéfalo/patologia , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Piridinas/uso terapêutico , Adulto , Atrofia/prevenção & controle , Encéfalo/diagnóstico por imagem , Depressão/induzido quimicamente , Imagem de Tensor de Difusão , Progressão da Doença , Método Duplo-Cego , Feminino , Gastroenteropatias/induzido quimicamente , Cefaleia/induzido quimicamente , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/patologia , Inibidores de Fosfodiesterase/efeitos adversos , Piridinas/efeitos adversos
4.
J Immunol ; 197(11): 4257-4265, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798157

RESUMO

CD40 interacts with CD40L and plays an essential role in immune regulation and homeostasis. Recent research findings, however, support a pathogenic role of CD40 in a number of autoimmune diseases. We previously showed that memory B cells from relapsing-remitting multiple sclerosis (RRMS) patients exhibited enhanced proliferation with CD40 stimulation compared with healthy donors. In this study, we used a multiparameter phosflow approach to analyze the phosphorylation status of NF-κB and three major MAPKs (P38, ERK, and JNK), the essential components of signaling pathways downstream of CD40 engagement in B cells from MS patients. We found that memory and naive B cells from RRMS and secondary progressive MS patients exhibited a significantly elevated level of phosphorylated NF-κB (p-P65) following CD40 stimulation compared with healthy donor controls. Combination therapy with IFN-ß-1a (Avonex) and mycophenolate mofetil (Cellcept) modulated the hyperphosphorylation of P65 in B cells of RRMS patients at levels similar to healthy donor controls. Lower disease activity after the combination therapy correlated with the reduced phosphorylation of P65 following CD40 stimulation in treated patients. Additionally, glatiramer acetate treatment also significantly reduced CD40-mediated P65 phosphorylation in RRMS patients, suggesting that reducing CD40-mediated p-P65 induction may be a general mechanism by which some current therapies modulate MS disease.


Assuntos
Linfócitos B/imunologia , Antígenos CD40/imunologia , Acetato de Glatiramer/administração & dosagem , Interferon beta-1a/administração & dosagem , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Esclerose Múltipla , Ácido Micofenólico/administração & dosagem , Fator de Transcrição RelA/imunologia , Idoso , Linfócitos B/patologia , Quimioterapia Combinada , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Feminino , Humanos , Memória Imunológica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia
5.
Brain ; 139(Pt 6): 1747-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27190026

RESUMO

Transforming growth factor beta (TGFß) signalling is critical for regulatory T cell development and function, and regulatory T cell dysregulation is a common observation in autoimmune diseases, including multiple sclerosis. In a comprehensive miRNA profiling study of patients with multiple sclerosis naïve CD4 T cells, 19 differentially expressed miRNAs predicted to target the TGFß signalling pathway were identified, leading to the hypothesis that miRNAs may be responsible for the regulatory T cell defect observed in patients with multiple sclerosis. Patients with multiple sclerosis had reduced levels of TGFß signalling components in their naïve CD4 T cells. The differentially expressed miRNAs negatively regulated the TGFß pathway, resulting in a reduced capacity of naïve CD4 T cells to differentiate into regulatory T cells. Interestingly, the limited number of regulatory T cells, that did develop when these TGFß-targeting miRNAs were overexpressed, were capable of suppressing effector T cells. As it has previously been demonstrated that compromising TGFß signalling results in a reduced regulatory T cell repertoire insufficient to control autoimmunity, and patients with multiple sclerosis have a reduced regulatory T cell repertoire, these data indicate that the elevated expression of multiple TGFß-targeting miRNAs in naïve CD4 T cells of patients with multiple sclerosis impairs TGFß signalling, and dampens regulatory T cell development, thereby enhancing susceptibility to developing multiple sclerosis.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , MicroRNAs/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Transdução de Sinais/genética
6.
J Neuroinflammation ; 13(1): 302, 2016 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-27912762

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic CNS autoimmune disease characterized by inflammation, demyelination, and neuronal degeneration, where myelin-specific CD4 T cells play critical roles in the formation of acute MS lesions and disease progression. The suppression of IL-7Rα expression and the upregulation of inhibitory receptors (PD-1, etc.) are essential parts of the cell-intrinsic immunosuppressive program regulating T effector functions to prevent autoimmunity. However, little is known on the factors regulating IL-7Rα/PD-1 balance in myelin-specific CD4 T effector/memory cells during the development of CNS autoimmunity. METHODS: We analyzed the roles of the transcription factor T-bet in regulating the expression of IL-7Rα and inhibitory receptors in myelin-specific CD4 T cells. Furthermore, we compared the effects of different inflammatory cytokines that are crucial for Th1 and Th17 development in regulating the IL-7Rα/PD-1 balance. RESULTS: We discovered that T-bet suppresses the expression of inhibitory receptors (PD-1 and LAG-3) and promotes IL-7Rα expression in myelin-specific CD4 T cells in vitro and in vivo. As a result, T-bet skews IL-7Rα/PD-1 balance towards IL-7Rα and promotes enhanced effector function. Furthermore, IL-12 enhances IL-7Rα expression in a T-bet independent manner in myelin-specific Th1 cells. Meanwhile, IL-6, the cytokine inducing highly encephalitogenic Th17 differentiation, suppresses PD-1 while upregulating IL-7Rα, skewing IL-7Rα/PD-1 balance towards IL-7Rα, and promoting enhanced effector function. Moreover, blocking IL-7 signaling in myelin-specific CD4 T cells by αIL-7Rα significantly delays experimental autoimmune encephalomyelitis (EAE) onset and reduces disease severity. CONCLUSIONS: T-bet is a major transcription factor regulating IL-7Rα/PD-1 balance in myelin-specific CD4 T cells during EAE development, and there is a positive correlation between several major determinants promoting T cell encephalitogenicity (T-bet, IL-6, IL-12) and an IL-7Rα/PD-1 balance skewed towards IL-7Rα. Furthermore, IL-7 signaling inhibits PD-1 expression in myelin-specific CD4 T cells and blocking IL-7 signaling suppresses T cell encephalitogenicity. Therefore, interference with inhibitory pathways and IL-7Rα expression may suppress the encephalitogenic potential of myelin-specific CD4 T cells and have therapeutic benefits for MS patients.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/cirurgia , Regulação da Expressão Gênica/imunologia , Receptores de Interleucina-17/metabolismo , Animais , Sistema Nervoso Central/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Células Th1/metabolismo
7.
Brain Behav Immun ; 46: 44-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25499467

RESUMO

The phenotype of the CD4(+) T cells that mediate the CNS pathology in multiple sclerosis is still unclear, and yet a vital question for developing therapies. One of the conundrums is the role of TGF-ß in the development of encephalitogenic Th17 cells. In the present study, TGF-ß1 and TGF-ß3 were directly compared in their capacity to promote the differentiation of myelin-specific Th17 cells that could induce experimental autoimmune encephalomyelitis (EAE). Myelin-specific CD4(+) T cell receptor transgenic cells differentiated with antigen in the presence of IL-6+TGF-ß1 or IL-6+TGF-ß3 generated T cells that produced robust amounts of IL-17, but were incapable of inducing EAE when transferred into mice. Further analysis of these non-encephalitogenic Th17 cells found that they expressed lower amounts of GM-CSF or IL-23R, both molecules necessary for encephalitogenicity. Thus, TGF-ß, irrespective of isoform, negatively regulates the differentiation of encephalitogenic Th17 cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Células Th17/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta3/farmacologia , Transferência Adotiva , Animais , Encefalomielite Autoimune Experimental/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Transgênicos , Células Th17/imunologia , Células Th17/metabolismo
8.
J Immunol ; 189(4): 1567-76, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22772450

RESUMO

Th cell programming and function is tightly regulated by complex biological networks to prevent excessive inflammatory responses and autoimmune disease. The importance of microRNAs (miRNAs) in this process is highlighted by the preferential Th1 polarization of Dicer-deficient T cells that lack miRNAs. Using genetic knockouts, we demonstrate that loss of endogenous miR-29, derived from the miR-29ab1 genomic cluster, results in unrestrained T-bet expression and IFN-γ production. miR-29b regulates T-bet and IFN-γ via a direct interaction with the 3' untranslated regions, and IFN-γ itself enhances miR-29b expression, establishing a novel regulatory feedback loop. miR-29b is increased in memory CD4(+) T cells from multiple sclerosis (MS) patients, which may reflect chronic Th1 inflammation. However, miR-29b levels decrease significantly upon T cell activation in MS patients, suggesting that this feedback loop is dysregulated in MS patients and may contribute to chronic inflammation. miR-29 thus serves as a novel regulator of Th1 differentiation, adding to the understanding of T cell-intrinsic regulatory mechanisms that maintain a balance between protective immunity and autoimmunity.


Assuntos
Diferenciação Celular/imunologia , MicroRNAs/imunologia , Esclerose Múltipla/imunologia , Células Th1/imunologia , Animais , Northern Blotting , Diferenciação Celular/genética , Imunoprecipitação da Cromatina , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Retroalimentação Fisiológica , Citometria de Fluxo , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Esclerose Múltipla/genética
9.
J Investig Med ; 72(5): 465-474, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38548482

RESUMO

Early detection of Alzheimer's disease (AD) represents an unmet clinical need. Beta-amyloid (Aß) plays an important role in AD pathology, and the Aß42/40 peptide ratio is a good indicator for amyloid deposition. In addition, variants of the apolipoprotein E (APOE) gene are associated with variable AD risk. Here, we describe the development and validation of high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays for plasma Aß40 and Aß42 quantitation, as well as apolipoprotein E (ApoE) proteotype determination as a surrogate for APOE genotype. Aß40 and Aß42 were simultaneously immunoprecipitated from plasma, proteolytically digested, and quantitated by LC-MS/MS. ApoE proteotype status was qualitatively assessed by targeting tryptic peptides from the ApoE2, ApoE3, and ApoE4 proteoforms. Both assays were validated according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Within-run precision was 1.8%-4.2% (Aß40), 1.9%-7.2% (Aß42), and 2.6%-8.3% (Aß42/40 ratio). Between-run precision was 3.5%-5.9% (Aß40), 3.8%-8.0% (Aß42), and 3.3%-8.7% (Aß42/40 ratio). Both Aß40 and Aß42 were linear from 10 to 2500 pg/mL. Identified ApoE proteotypes had 100% concordance with APOE genotypes. We have developed a precise, accurate, and sensitive high-throughput LC-MS/MS assay for plasma Aß40, Aß42, and proteoforms of ApoE.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Apolipoproteínas E , Espectrometria de Massas em Tandem , Peptídeos beta-Amiloides/sangue , Humanos , Apolipoproteínas E/genética , Apolipoproteínas E/sangue , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Cromatografia Líquida , Medição de Risco , Reprodutibilidade dos Testes , Feminino , Masculino , Fragmentos de Peptídeos/sangue , Idoso , Espectrometria de Massa com Cromatografia Líquida
10.
J Mol Diagn ; 26(6): 520-529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522839

RESUMO

This study aims to identify RNA biomarkers distinguishing neuromyelitis optica (NMO) from relapsing-remitting multiple sclerosis (RRMS) and explore potential therapeutic applications leveraging machine learning (ML). An ensemble approach was developed using differential gene expression analysis and competitive ML methods, interrogating total RNA-sequencing data sets from peripheral whole blood of treatment-naïve patients with RRMS and NMO and healthy individuals. Pathway analysis of candidate biomarkers informed the biological context of disease, transcription factor activity, and small-molecule therapeutic potential. ML models differentiated between patients with NMO and RRMS, with the performance of certain models exceeding 90% accuracy. RNA biomarkers driving model performance were associated with ribosomal dysfunction and viral infection. Regulatory networks of kinases and transcription factors identified biological associations and identified potential therapeutic targets. Small-molecule candidates capable of reversing perturbed gene expression were uncovered. Mitoxantrone and vorinostat-two identified small molecules with previously reported use in patients with NMO and experimental autoimmune encephalomyelitis-reinforced discovered expression signatures and highlighted the potential to identify new therapeutic candidates. Putative RNA biomarkers were identified that accurately distinguish NMO from RRMS and healthy individuals. The application of multivariate approaches in analysis of RNA-sequencing data further enhances the discovery of unique RNA biomarkers, accelerating the development of new methods for disease detection, monitoring, and therapeutics. Integrating biological understanding further enhances detection of disease-specific signatures and possible therapeutic targets.


Assuntos
Biomarcadores , Aprendizado de Máquina , Neuromielite Óptica , Análise de Sequência de RNA , Neuromielite Óptica/genética , Neuromielite Óptica/diagnóstico , Neuromielite Óptica/tratamento farmacológico , Humanos , Feminino , Biomarcadores/sangue , Análise de Sequência de RNA/métodos , Masculino , Mitoxantrona/uso terapêutico , Adulto , Diagnóstico Diferencial , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Perfilação da Expressão Gênica/métodos , Esclerose Múltipla/genética , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/sangue
11.
Front Neurol ; 15: 1364658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595851

RESUMO

Introduction: Plasma Aß42/40 ratio can help predict amyloid PET status, but its clinical utility in Alzheimer's disease (AD) assessment is unclear. Methods: Aß42/40 ratio was measured by LC-MS/MS for 250 specimens with associated amyloid PET imaging, diagnosis, and demographic data, and for 6,192 consecutive clinical specimens submitted for Aß42/40 testing. Results: High diagnostic sensitivity and negative predictive value (NPV) for Aß-PET positivity were observed, consistent with the clinical performance of other plasma LC-MS/MS assays, but with greater separation between Aß42/40 values for individuals with positive vs. negative Aß-PET results. Assuming a moderate prevalence of Aß-PET positivity, a cutpoint was identified with 99% NPV, which could help predict that AD is likely not the cause of patients' cognitive impairment and help reduce PET evaluation by about 40%. Conclusion: High-throughput plasma Aß42/40 LC-MS/MS assays can help identify patients with low likelihood of AD pathology, which can reduce PET evaluations, allowing for cost savings.

12.
EBioMedicine ; 103: 105114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640835

RESUMO

BACKGROUND: The innate immune cytokine interleukin (IL)-1 can affect T cell immunity, a critical factor in host defense. In a previous study, we identified a subset of human CD4+ T cells which express IL-1 receptor 1 (IL-1R1). However, the expression of such receptor by viral antigen-specific CD4+ T cells and its biological implication remain largely unexplored. This led us to investigate the implication of IL-1R1 in the development of viral antigen-specific CD4+ T cell responses in humans, including healthy individuals and patients with primary antibody deficiency (PAD), and animals. METHODS: We characterized CD4+ T cells specific for SARS-CoV-2 spike (S) protein, influenza virus, and cytomegalovirus utilizing multiplexed single cell RNA-seq, mass cytometry and flow cytometry followed by an animal study. FINDINGS: In healthy individuals, CD4+ T cells specific for viral antigens, including S protein, highly expressed IL-1R1. IL-1ß promoted interferon (IFN)-γ expression by S protein-stimulated CD4+ T cells, supporting the functional implication of IL-1R1. Following the 2nd dose of COVID-19 mRNA vaccines, S protein-specific CD4+ T cells with high levels of IL-1R1 increased, likely reflecting repetitive antigenic stimulation. The expression levels of IL-1R1 by such cells correlated with the development of serum anti-S protein IgG antibody. A similar finding of increased expression of IL-1R1 by S protein-specific CD4+ T cells was also observed in patients with PAD following COVID-19 mRNA vaccination although the expression levels of IL-1R1 by such cells did not correlate with the levels of serum anti-S protein IgG antibody. In mice immunized with COVID-19 mRNA vaccine, neutralizing IL-1R1 decreased IFN-γ expression by S protein-specific CD4+ T cells and the development of anti-S protein IgG antibody. INTERPRETATION: Our results demonstrate the significance of IL-1R1 expression in CD4+ T cells for the development of viral antigen-specific CD4+ T cell responses, contributing to humoral immunity. This provides an insight into the regulation of adaptive immune responses to viruses via the IL-1 and IL-1R1 interface. FUNDING: Moderna to HJP, National Institutes of Health (NIH) 1R01AG056728 and R01AG055362 to IK and KL2 TR001862 to JJS, Quest Diagnostics to IK and RB, and the Mathers Foundation to RB.


Assuntos
Linfócitos T CD4-Positivos , COVID-19 , SARS-CoV-2 , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Animais , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Camundongos , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas contra COVID-19/imunologia , Antígenos Virais/imunologia , Vacinação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Vacinas de mRNA , Feminino , Interferon gama/metabolismo
13.
J Biol Chem ; 287(33): 28017-26, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733812

RESUMO

Dimethyl fumarate (DMF) is an effective novel treatment for multiple sclerosis in clinical trials. A reduction of IFN-γ-producing CD4(+) T cells is observed in DMF-treated patients and may contribute to its clinical efficacy. However, the cellular and molecular mechanisms behind this clinical observation are unclear. In this study, we investigated the effects of DMF on dendritic cell (DC) maturation and subsequent DC-mediated T cell responses. We show that DMF inhibits DC maturation by reducing inflammatory cytokine production (IL-12 and IL-6) and the expression of MHC class II, CD80, and CD86. Importantly, this immature DC phenotype generated fewer activated T cells that were characterized by decreased IFN-γ and IL-17 production. Further molecular studies demonstrated that DMF impaired nuclear factor κB (NF-κB) signaling via reduced p65 nuclear translocalization and phosphorylation. NF-κB signaling was further decreased by DMF-mediated suppression of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and its downstream kinase mitogen stress-activated kinase 1 (MSK1). MSK1 suppression resulted in decreased p65 phosphorylation at serine 276 and reduced histone phosphorylation at serine 10. As a consequence, DMF appears to reduce p65 transcriptional activity both directly and indirectly by promoting a silent chromatin environment. Finally, treatment of DCs with the MSK1 inhibitor H89 partially mimicked the effects of DMF on the DC signaling pathway and impaired DC maturation. Taken together, these studies indicate that by suppression of both NF-κB and ERK1/2-MSK1 signaling, DMF inhibits maturation of DCs and subsequently Th1 and Th17 cell differentiation.


Assuntos
Células Dendríticas/imunologia , Fumaratos/farmacologia , Imunossupressores/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Proteínas Quinases S6 Ribossômicas 90-kDa/imunologia , Fator de Transcrição RelA/imunologia , Animais , Antígeno B7-1/biossíntese , Antígeno B7-1/imunologia , Antígeno B7-2/biossíntese , Antígeno B7-2/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Fumarato de Dimetilo , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/imunologia , Interleucina-12/imunologia , Interleucina-12/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo , Fator de Transcrição RelA/metabolismo
14.
J Immunol ; 186(4): 1887-90, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21289312

RESUMO

Glatiramer acetate (GA) has been used as an immunomodulatory agent for the treatment of relapsing-remitting multiple sclerosis (MS) in the United States since 1996. It is currently one of two first-line agents for use in the treatment of relapsing-remitting MS. GA was the first agent to be used in the treatment of MS that was developed using the animal model of MS called experimental autoimmune encephalomyelitis. In this commentary, we examine the development of GA as a treatment for MS and discuss its mechanism of action as suggested by recent studies using modern immunologic methods.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Peptídeos/uso terapêutico , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Acetato de Glatiramer , Humanos , Esclerose Múltipla Recidivante-Remitente/patologia , Peptídeos/administração & dosagem , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-36357190

RESUMO

We describe a woman with a history of relapsing acute optic neuritis and perineuritis. Testing failed to confirm a specific diagnosis; hence, she was diagnosed with seronegative neuromyelitis optica spectrum disorder and treated with the immunotherapy rituximab, later in conjunction with mycophenolate mofetil. She achieved a durable remission for 9 years until she presented with paresthesia affecting her left fifth digit, right proximal thigh, and left foot, while also reporting a 25-pound weight loss over the prior 3 months. New imaging demonstrated a longitudinally extensive and enhancing optic nerve, in conjunction with multifocal enhancing lesions within the spinal cord, in a skip-like distribution. The differential diagnosis is discussed.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Neurite Óptica , Humanos , Feminino , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/tratamento farmacológico , Imageamento por Ressonância Magnética , Neurite Óptica/diagnóstico , Neurite Óptica/tratamento farmacológico , Neuromielite Óptica/complicações , Neuromielite Óptica/diagnóstico , Neuromielite Óptica/tratamento farmacológico , Nervo Óptico/patologia
16.
medRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168329

RESUMO

INTRODUCTION: Plasma Aß42/40 ratio can be used to help predict amyloid PET status, but its clinical utility in Alzheimer's disease (AD) assessment is unclear. METHODS: Aß42/40 ratio was measured by LC-MS/MS in 250 specimens with associated amyloid PET imaging, diagnosis, and demographic data, and 6,192 consecutive clinical specimens submitted for Aß42/40 testing. RESULTS: High diagnostic sensitivity and negative predictive value (NPV) for Aß-PET positivity were observed, consistent with the clinical performance of other plasma LC-MS/MS assays, but with greater separation between Aß42/40 values for individuals with positive vs negative Aß-PET results. Assuming a moderate prevalence of Aß-PET positivity, a cutpoint was identified with 99% NPV, which could help predict that AD is likely not the cause of patients' cognitive impairment and help reduce PET evaluation by about 40%. DISCUSSION: Using high-throughput plasma Aß42/40 LC-MS/MS assays can help reduce PET evaluations in patients with low likelihood of AD pathology, allowing for cost savings.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36270950

RESUMO

A woman presented at age 18 years with partial myelitis and diplopia and experienced multiple subsequent relapses. Her MRI demonstrated T2 abnormalities characteristic of multiple sclerosis (MS) (white matter ovoid lesions and Dawson fingers), and CSF demonstrated an elevated IgG index and oligoclonal bands restricted to the CSF. Diagnosed with clinically definite relapsing-remitting MS, she was treated with various MS disease-modifying therapies and eventually began experiencing secondary progression. At age 57 years, she developed an acute longitudinally extensive transverse myelitis and was found to have AQP4 antibodies by cell-based assay. Our analysis of the clinical course, radiographic findings, molecular diagnostic methods, and treatment response characteristics support the hypothesis that our patient most likely had 2 CNS inflammatory disorders: MS, which manifested as a teenager, and neuromyelitis optica spectrum disorder, which evolved in her sixth decade of life. This case emphasizes a key principle in neurology practice, which is to reconsider whether the original working diagnosis remains tenable, especially when confronted with evidence (clinical and/or paraclinical) that raises the possibility of a distinctively different disorder.


Assuntos
Esclerose Múltipla , Mielite Transversa , Neuromielite Óptica , Humanos , Adolescente , Feminino , Pessoa de Meia-Idade , Aquaporina 4 , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/complicações , Bandas Oligoclonais , Mielite Transversa/diagnóstico , Mielite Transversa/complicações , Imunoglobulina G
18.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606046

RESUMO

BACKGROUNDWhile B cell depletion is associated with attenuated antibody responses to SARS-CoV-2 mRNA vaccination, responses vary among individuals. Thus, elucidating the factors that affect immune responses after repeated vaccination is an important clinical need.METHODSWe evaluated the quality and magnitude of the T cell, B cell, antibody, and cytokine responses to a third dose of BNT162b2 or mRNA-1273 mRNA vaccine in patients with B cell depletion.RESULTSIn contrast with control individuals (n = 10), most patients on anti-CD20 therapy (n = 48) did not demonstrate an increase in spike-specific B cells or antibodies after a third dose of vaccine. A third vaccine elicited significantly increased frequencies of spike-specific non-naive T cells. A small subset of B cell-depleted individuals effectively produced spike-specific antibodies, and logistic regression models identified time since last anti-CD20 treatment and lower cumulative exposure to anti-CD20 mAbs as predictors of those having a serologic response. B cell-depleted patients who mounted an antibody response to 3 vaccine doses had persistent humoral immunity 6 months later.CONCLUSIONThese results demonstrate that serial vaccination strategies can be effective for a subset of B cell-depleted patients.FUNDINGThe NIH (R25 NS079193, P01 AI073748, U24 AI11867, R01 AI22220, UM 1HG009390, P01 AI039671, P50 CA121974, R01 CA227473, U01CA260507, 75N93019C00065, K24 AG042489), NIH HIPC Consortium (U19 AI089992), the National Multiple Sclerosis Society (CA 1061-A-18, RG-1802-30153), the Nancy Taylor Foundation for Chronic Diseases, Erase MS, and the Claude D. Pepper Older Americans Independence Center at Yale (P30 AG21342).


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Idoso , SARS-CoV-2 , Vacina BNT162 , COVID-19/prevenção & controle , Vacinação , Anticorpos Monoclonais , Soro Antilinfocitário , RNA Mensageiro
19.
Small Methods ; 7(10): e2300594, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37312418

RESUMO

How to develop highly informative serology assays to evaluate the quality of immune protection against coronavirus disease-19 (COVID-19) has been a global pursuit over the past years. Here, a microfluidic high-plex immuno-serolomic assay is developed to simultaneously measure50 plasma or serum samples for50 soluble markers including 35proteins, 11 anti-spike/receptor binding domian (RBD) IgG antibodies spanningmajor variants, and controls. This assay demonstrates the quintuplicate test in a single run with high throughput, low sample volume, high reproducibilityand accuracy. It is applied to the measurement of 1012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein analysis reveals distinct immune mediator modules that exhibit a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies or receiving B cell depletion therapy. Serological analysis identifies that COVID-infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which can be associated with limited clonotype diversity and functional deficiency in B cells. These findings underscore the importance to individualize immunization strategies for these high-risk patients and provide an informative tool to monitor their responses at the systems level.


Assuntos
COVID-19 , Neoplasias Hematológicas , Vacinas , Humanos , COVID-19/prevenção & controle , Microfluídica , Imunoglobulina G
20.
Biochim Biophys Acta ; 1812(2): 246-51, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20600875

RESUMO

Our understanding of the pathophysiology of multiple sclerosis (MS) has evolved significantly over the past two decades as the fields of immunology and neurobiology provide new avenues of exploration into the cause and mechanism of the disease. It has been known for decades that T cells have different cytokine phenotypes, yet the cytokine phenotype of pathogenic T cells in MS is still an area of debate. In EAE, it appears that IFNγ and IL-17, produced by Th1 and Th17 cells respectively, are not the critical factor that determines T cell encephalitogenicity. However, there are molecules such as IL-23, T-bet and STAT4, that appear to be critical, yet it is unclear whether all these molecules contribute to a common, yet undefined pathway, or act in a synergistic manner which culminates in encephalitogenicity has still to be determined. Therefore, the focus of research on effector T cells in MS should focus on pathways upstream of the cytokines that define Th1 and Th17 cells, since downstream products, such as IFNγ and IL-17, probably are not critical determinants of whether an effector T cells is capable of trafficking to the CNS and inducing inflammatory demyelination.


Assuntos
Citocinas/imunologia , Esclerose Múltipla/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/imunologia , Humanos , Interferon gama/imunologia , Interleucina-17/imunologia , Interleucina-23/imunologia , Camundongos , Modelos Imunológicos , Modelos Neurológicos , Esclerose Múltipla/etiologia , Fator de Transcrição STAT4/imunologia , Proteínas com Domínio T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA