Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Cell ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38876107

RESUMO

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.

2.
J Infect Dis ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884588

RESUMO

BACKGROUND: The global resurgence of syphilis necessitates vaccine development. METHODS: We collected ulcer exudates and blood from 17 primary syphilis (PS) participants and skin biopsies and blood from 51 secondary syphilis (SS) participants in Guangzhou, China for Treponema pallidum subsp. pallidum (TPA) qPCR, whole genome sequencing (WGS), and isolation of TPA in rabbits. RESULTS: TPA DNA was detected in 15 of 17 ulcer exudates and 3 of 17 blood PS specimens. TPA DNA was detected in 50 of 51 SS skin biopsies and 27 of 51 blood specimens. TPA was isolated from 47 rabbits with success rates of 71% (12/17) and 69% (35/51), respectively, from ulcer exudates and SS bloods. We obtained paired genomic sequences from 24 clinical samples and corresponding rabbit isolates. Six SS14- and two Nichols-clade genome pairs contained rare discordances. Forty-one of the 51 unique TPA genomes clustered within SS14 subgroups largely from East Asia, while 10 fell into Nichols C and E subgroups. CONCLUSIONS: Our TPA detection rate was high from PS ulcer exudates and SS skin biopsies and over 50% from SS blood, with TPA isolation in over two-thirds of samples. Our results support the use of WGS from rabbit isolates to inform vaccine development.


The incidence of new cases of syphilis has skyrocketed globally in the twenty-first century. This global resurgence requires new strategies, including vaccine development. As part of an NIH funded Cooperative Research Center to develop a syphilis vaccine, we established a clinical research site in Guangzhou, China to better define the local syphilis epidemic and obtain samples from patients with primary and secondary syphilis for whole genome sequencing (WGS) of circulating Treponema pallidum strains. Inoculation of rabbits enabled us to obtain T. pallidum genomic sequences from spirochetes disseminating in blood, a compartment of immense importance for syphilis pathogenesis. Collectively, our results further clarify the molecular epidemiology of syphilis in southern China, enrich our understanding of the manifestations of early syphilis, and demonstrate that the genomic sequences of spirochetes obtained by rabbit inoculation accurately represent those of the spirochetes infecting the corresponding patients.

3.
PLoS Pathog ; 17(1): e1009180, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428666

RESUMO

Borrelia burgdorferi must acquire all of its amino acids (AAs) from its arthropod vector and vertebrate host. Previously, we determined that peptide uptake via the oligopeptide (Opp) ABC transporter is essential for spirochete viability in vitro and during infection. Our prior study also suggested that B. burgdorferi employs temporal regulation in concert with structural variation of oligopeptide-binding proteins (OppAs) to meet its AA requirements in each biological niche. Herein, we evaluated the contributions to the B. burgdorferi enzootic cycle of three of the spirochete's five OppAs (OppA1, OppA2, and OppA5). An oppA1 transposon (tn) mutant lysed in the hyperosmolar environment of the feeding tick, suggesting that OppA1 imports amino acids required for osmoprotection. The oppA2tn mutant displayed a profound defect in hematogenous dissemination in mice, yet persisted within skin while inducing only a minimal antibody response. These results, along with slightly decreased growth of the oppA2tn mutant within DMCs, suggest that OppA2 serves a minor nutritive role, while its dissemination defect points to an as yet uncharacterized signaling function. Previously, we identified a role for OppA5 in spirochete persistence within the mammalian host. We now show that the oppA5tn mutant displayed no defect during the tick phase of the cycle and could be tick-transmitted to naïve mice. Instead of working in tandem, however, OppA2 and OppA5 appear to function in a hierarchical manner; the ability of OppA5 to promote persistence relies upon the ability of OppA2 to facilitate dissemination. Structural homology models demonstrated variations within the binding pockets of OppA1, 2, and 5 indicative of different peptide repertoires. Rather than being redundant, B. burgdorferi's multiplicity of Opp binding proteins enables host-specific functional compartmentalization during the spirochete lifecycle.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/fisiologia , Interações Hospedeiro-Patógeno , Ixodes/microbiologia , Doença de Lyme/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Animais , Transporte Biológico , Feminino , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/genética , Doença de Lyme/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Ratos , Ratos Sprague-Dawley , Virulência
4.
PLoS Pathog ; 17(7): e1009725, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34265024

RESUMO

In this study, we examined the relationship between c-di-GMP and its only known effector protein, PlzA, in Borrelia burgdorferi during the arthropod and mammalian phases of the enzootic cycle. Using a B. burgdorferi strain expressing a plzA point mutant (plzA-R145D) unable to bind c-di-GMP, we confirmed that the protective function of PlzA in ticks is c-di-GMP-dependent. Unlike ΔplzA spirochetes, which are severely attenuated in mice, the plzA-R145D strain was fully infectious, firmly establishing that PlzA serves a c-di-GMP-independent function in mammals. Contrary to prior reports, loss of PlzA did not affect expression of RpoS or RpoS-dependent genes, which are essential for transmission, mammalian host-adaptation and murine infection. To ascertain the nature of PlzA's c-di-GMP-independent function(s), we employed infection models using (i) host-adapted mutant spirochetes for needle inoculation of immunocompetent mice and (ii) infection of scid mice with in vitro-grown organisms. Both approaches substantially restored ΔplzA infectivity, suggesting that PlzA enables B. burgdorferi to overcome an early bottleneck to infection. Furthermore, using a Borrelia strain expressing a heterologous, constitutively active diguanylate cyclase, we demonstrate that 'ectopic' production of c-di-GMP in mammals abrogates spirochete virulence and interferes with RpoS function at the post-translational level in a PlzA-dependent manner. Structural modeling and SAXS analysis of liganded- and unliganded-PlzA revealed marked conformational changes that underlie its biphasic functionality. This structural plasticity likely enables PlzA to serve as a c-di-GMP biosensor that in its respective liganded and unliganded states promote vector- and host-adaptation by the Lyme disease spirochete.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidade , Virulência/fisiologia , Animais , GMP Cíclico/análogos & derivados , Feminino , Interações Hospedeiro-Patógeno/fisiologia , Evasão da Resposta Imune/fisiologia , Ixodes/parasitologia , Doença de Lyme/metabolismo , Camundongos
5.
PLoS Pathog ; 16(9): e1008871, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32936831

RESUMO

Deconvolution of syphilis pathogenesis and selection of candidate syphilis vaccinogens requires detailed knowledge of the molecular architecture of the Treponema pallidum outer membrane (OM). The T. pallidum OM contains a low density of integral OM proteins, while the spirochete's many lipoprotein immunogens are periplasmic. TP0751, a lipoprotein with a lipocalin fold, is reportedly a surface-exposed protease/adhesin and protective antigen. The rapid expansion of calycin/lipocalin structures in the RCSB PDB database prompted a comprehensive reassessment of TP0751. Small angle X-ray scattering analysis of full-length protein revealed a bipartite topology consisting of an N-terminal, intrinsically disordered region (IDR) and the previously characterized C-terminal lipocalin domain. A DALI server query using the lipocalin domain yielded 97 hits, 52 belonging to the calycin superfamily, including 15 bacterial lipocalins, but no Gram-negative surface proteins. Surprisingly, Tpp17 (TP0435) was identified as a structural ortholog of TP0751. In silico docking predicted that TP0751 can bind diverse ligands along the rim of its eight-stranded ß-barrel; high affinity binding of one predicted ligand, heme, to the lipocalin domain was demonstrated. qRT-PCR and immunoblotting revealed very low expression of TP0751 compared to other T. pallidum lipoproteins. Immunoblot analysis of immune rabbit serum failed to detect TP0751 antibodies, while only one of five patients with secondary syphilis mounted a discernible TP0751-specific antibody response. In opsonophagocytosis assays, neither TP0751 nor Tpp17 antibodies promoted uptake of T. pallidum by rabbit peritoneal macrophages. Rabbits immunized with intact, full-length TP0751 showed no protection against local or disseminated infection following intradermal challenge with T. pallidum. Our data argue that, like other lipoprotein lipocalins in dual-membrane bacteria, TP0751 is periplasmic and binds small molecules, and we propose that its IDR facilitates ligand binding by and offloading from the lipocalin domain. The inability of TP0751 to elicit opsonic or protective antibodies is consistent with a subsurface location.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Imunização , Lipoproteínas/imunologia , Sífilis/imunologia , Treponema pallidum/imunologia , Animais , Proteínas de Bactérias/genética , Vacinas Bacterianas/genética , Humanos , Lipoproteínas/genética , Domínios Proteicos , Dobramento de Proteína , Coelhos , Sífilis/genética , Sífilis/patologia , Sífilis/prevenção & controle , Treponema pallidum/genética , Treponema pallidum/patogenicidade
6.
J Infect Dis ; 223(5): 848-853, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32710788

RESUMO

BACKGROUND: Whole-genome sequencing (WGS) of Treponema pallidum subspecies pallidum (TPA) has been constrained by the lack of in vitro cultivation methods for isolating spirochetes from patient samples. METHODS: We built upon recently developed enrichment methods to sequence TPA directly from primary syphilis chancre swabs collected in Guangzhou, China. RESULTS: By combining parallel, pooled whole-genome amplification with hybrid selection, we generated high-quality genomes from 4 of 8 chancre-swab samples and 2 of 2 rabbit-passaged isolates, all subjected to challenging storage conditions. CONCLUSIONS: This approach enabled the first WGS of Chinese samples without rabbit passage and provided insights into TPA genetic diversity in China.


Assuntos
Cancro , Sífilis , Treponema pallidum/classificação , Animais , Cancro/diagnóstico , Cancro/microbiologia , China , Humanos , Coelhos , Sífilis/diagnóstico , Sífilis/microbiologia , Treponema pallidum/genética , Sequenciamento Completo do Genoma
7.
J Bacteriol ; 203(15): e0008221, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33972353

RESUMO

Treponema pallidum, an obligate human pathogen, has an outer membrane (OM) whose physical properties, ultrastructure, and composition differ markedly from those of phylogenetically distant Gram-negative bacteria. We developed structural models for the outer membrane protein (OMP) repertoire (OMPeome) of T. pallidum Nichols using solved Gram-negative structures, computational tools, and small-angle X-ray scattering (SAXS) of selected recombinant periplasmic domains. The T. pallidum "OMPeome" harbors two "stand-alone" proteins (BamA and LptD) involved in OM biogenesis and four paralogous families involved in the influx/efflux of small molecules: 8-stranded ß-barrels, long-chain-fatty-acid transporters (FadLs), OM factors (OMFs) for efflux pumps, and T. pallidum repeat proteins (Tprs). BamA (TP0326), the central component of a ß-barrel assembly machine (BAM)/translocation and assembly module (TAM) hybrid, possesses a highly flexible polypeptide-transport-associated (POTRA) 1-5 arm predicted to interact with TamB (TP0325). TP0515, an LptD ortholog, contains a novel, unstructured C-terminal domain that models inside the ß-barrel. T. pallidum has four 8-stranded ß-barrels, each containing positively charged extracellular loops that could contribute to pathogenesis. Three of five FadL-like orthologs have a novel α-helical, presumptively periplasmic C-terminal extension. SAXS and structural modeling further supported the bipartite membrane topology and tridomain architecture of full-length members of the Tpr family. T. pallidum's two efflux pumps presumably extrude noxious small molecules via four coexpressed OMFs with variably charged tunnels. For BamA, LptD, and OMFs, we modeled the molecular machines that deliver their substrates into the OM or external milieu. The spirochete's extended families of OM transporters collectively confer a broad capacity for nutrient uptake. The models also furnish a structural road map for vaccine development. IMPORTANCE The unusual outer membrane (OM) of T. pallidum, the syphilis spirochete, is the ultrastructural basis for its well-recognized capacity for invasiveness, immune evasion, and persistence. In recent years, we have made considerable progress in identifying T. pallidum's repertoire of OMPs. Here, we developed three-dimensional (3D) models for the T. pallidum Nichols OMPeome using structural modeling, bioinformatics, and solution scattering. The OM contains three families of OMP transporters, an OMP family involved in the extrusion of noxious molecules, and two "stand-alone" proteins involved in OM biogenesis. This work represents a major advance toward elucidating host-pathogen interactions during syphilis; understanding how T. pallidum, an extreme auxotroph, obtains a wide array of biomolecules from its obligate human host; and developing a vaccine with global efficacy.


Assuntos
Membrana Externa Bacteriana/química , Vacinas Bacterianas/química , Sífilis/prevenção & controle , Treponema pallidum/imunologia , Membrana Externa Bacteriana/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Humanos , Modelos Estruturais , Conformação Proteica , Sífilis/microbiologia , Treponema pallidum/química , Treponema pallidum/genética , Difração de Raios X
8.
Curr Issues Mol Biol ; 42: 333-384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303701

RESUMO

Lyme disease (Lyme borreliosis) is a tick-borne, zoonosis of adults and children caused by genospecies of the Borrelia burgdorferi sensu lato complex. The ailment, widespread throughout the Northern Hemisphere, continues to increase globally due to multiple environmental factors, coupled with increased incursion of humans into habitats that harbor the spirochete. B. burgdorferi sensu lato is transmitted by ticks from the Ixodes ricinus complex. In North America, B. burgdorferi causes nearly all infections; in Europe, B. afzelii and B. garinii are most associated with human disease. The spirochete's unusual fragmented genome encodes a plethora of differentially expressed outer surface lipoproteins that play a seminal role in the bacterium's ability to sustain itself within its enzootic cycle and cause disease when transmitted to its incidental human host. Tissue damage and symptomatology (i.e., clinical manifestations) result from the inflammatory response elicited by the bacterium and its constituents. The deposition of spirochetes into human dermal tissue generates a local inflammatory response that manifests as erythema migrans (EM), the hallmark skin lesion. If treated appropriately and early, the prognosis is excellent. However, in untreated patients, the disease may present with a wide range of clinical manifestations, most commonly involving the central nervous system, joints, or heart. A small percentage (~10%) of patients may go on to develop a poorly defined fibromyalgia-like illness, post-treatment Lyme disease (PTLD) unresponsive to prolonged antimicrobial therapy. Below we integrate current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease into a conceptual framework that sheds light on the disorder that healthcare providers encounter.


Assuntos
Borrelia burgdorferi , Doença de Lyme/microbiologia , Animais , Vetores Artrópodes/microbiologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/crescimento & desenvolvimento , Gerenciamento Clínico , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Estágios do Ciclo de Vida , Doença de Lyme/diagnóstico , Doença de Lyme/epidemiologia , Doença de Lyme/transmissão , Especificidade de Órgãos , Carrapatos/microbiologia
9.
BMC Immunol ; 22(1): 32, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34000990

RESUMO

BACKGROUND: Macrophages play prominent roles in bacteria recognition and clearance, including Borrelia burgdorferi (Bb), the Lyme disease spirochete. To elucidate mechanisms by which MyD88/TLR signaling enhances clearance of Bb by macrophages, we studied wildtype (WT) and MyD88-/- Bb-stimulated bone marrow-derived macrophages (BMDMs). RESULTS: MyD88-/- BMDMs exhibit impaired uptake of spirochetes but comparable maturation of phagosomes following internalization of spirochetes. RNA-sequencing of infected WT and MyD88-/- BMDMs identified a large cohort of differentially expressed MyD88-dependent genes associated with re-organization of actin and cytoskeleton during phagocytosis along with several MyD88-independent chemokines involved in inflammatory cell recruitment. We computationally generated networks which identified several MyD88-dependent intermediate proteins (Rhoq and Cyfip1) that are known to mediate inflammation and phagocytosis respectively. CONCLUSION: Our findings show that MyD88 signaling enhances, but is not required, for bacterial uptake or phagosomal maturation and provide mechanistic insights into how MyD88-mediated phagosomal signaling enhances Bb uptake and clearance.


Assuntos
Borrelia burgdorferi/fisiologia , Inflamação/imunologia , Doença de Lyme/imunologia , Macrófagos/imunologia , Fagossomos/metabolismo , Actinas/genética , Animais , Células Cultivadas , Quimiocinas/genética , Citoesqueleto/genética , Feminino , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Análise de Sequência de RNA , Transdução de Sinais
10.
Sex Transm Dis ; 48(6): 443-450, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093287

RESUMO

BACKGROUND: We conducted an observational study to determine whether patients with syphilis who do not demonstrate serological cure or lack of seroreversion in nontreponemal (NT) antibody titers after initial therapy benefit from re-treatment and cerebrospinal fluid (CSF) analysis. METHODS: We enrolled patients with syphilis from sexually transmitted disease clinics in Guangzhou, China, who had persistent NT titers after therapy. Serological nonresponse was defined as a <4-fold decline in baseline NT titers after therapy. Lack of seroreversion was defined as demonstrating a ≥4-fold NT titer decline but without seroreversion to negative, or having persistent low-level titers (i.e., 1:1-1:2) after therapy. After consent, we abstracted medical record data regarding syphilis diagnoses, initial and re-treatment regimens, and serological outcomes. Nontreponemal titers were obtained from participants at enrollment and follow-up. We evaluated CSF findings among a subgroup of participants relative to re-treatment. RESULTS: From March 2012 to February 2016, we enrolled 135 HIV-negative patients with syphilis with persistent NT titers after initial therapy. Among 116 participants with ≥12 months of follow-up, 60 (52%) received re-treatment of syphilis. Overall, there were no significant differences in serological response between those who were re-treated and those who were not among serological nonresponders (29% vs. 27%; P = 1.0) or among participants without seroconversion (41% vs. 37%; P = 0.8). Of 60 participants who underwent CSF analyses, 8 (13%) had CSF abnormalities, but only 2 (3%) met the neurosyphilis criteria after re-treatment. CONCLUSIONS: Most HIV-negative patients with syphilis who have serological nonresponse or lack of seroreversion after therapy do not benefit from re-treatment in the short term, and neurosyphilis is uncommon.


Assuntos
Infecções por HIV , Neurossífilis , Sífilis , China/epidemiologia , Infecções por HIV/tratamento farmacológico , Humanos , Soroconversão , Sífilis/tratamento farmacológico , Sífilis/epidemiologia , Sorodiagnóstico da Sífilis
11.
Curr Top Microbiol Immunol ; 415: 1-38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28849315

RESUMO

The outer membrane (OM) of Treponema pallidum, the uncultivatable agent of venereal syphilis, has long been the subject of misconceptions and controversy. Decades ago, researchers postulated that T. pallidum's poor surface antigenicity is the basis for its ability to cause persistent infection, but they mistakenly attributed this enigmatic property to the presence of a protective outer coat of serum proteins and mucopolysaccharides. Subsequent studies revealed that the OM is the barrier to antibody binding, that it contains a paucity of integral membrane proteins, and that the preponderance of the spirochete's immunogenic lipoproteins is periplasmic. Since the advent of recombinant DNA technology, the fragility of the OM, its low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative outer membrane proteins (OMPs) have complicated efforts to characterize molecules residing at the host-pathogen interface. We have overcome these hurdles using the genomic sequence in concert with computational tools to identify proteins predicted to form ß-barrels, the hallmark conformation of OMPs in double-membrane organisms and evolutionarily related eukaryotic organelles. We also have employed diverse methodologies to confirm that some candidate OMPs do, in fact, form amphiphilic ß-barrels and are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMP repertoire is more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Treponema pallidum/citologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Humanos , Periplasma/imunologia , Periplasma/metabolismo , Sífilis/microbiologia , Treponema pallidum/imunologia , Treponema pallidum/patogenicidade
12.
J Biol Chem ; 290(19): 12313-31, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25805501

RESUMO

We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for ß-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the ß-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Porinas/química , Treponema pallidum/química , Dicroísmo Circular , Clonagem Molecular , Escherichia coli/metabolismo , Temperatura Alta , Lipossomos/química , Microscopia Eletrônica , Microscopia de Fluorescência , Nanopartículas/química , Octoxinol , Peptídeos/química , Periplasma/metabolismo , Polietilenoglicóis/química , Desnaturação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Espalhamento de Radiação , Sífilis/microbiologia , Temperatura
13.
Mol Microbiol ; 95(3): 509-38, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25425211

RESUMO

Borrelia burgdorferi, the agent of Lyme disease, is maintained in nature within an enzootic cycle involving a mammalian reservoir and an Ixodes sp. tick vector. The transmission, survival and pathogenic potential of B. burgdorferi depend on the bacterium's ability to modulate its transcriptome as it transits between vector and reservoir host. Herein, we employed an amplification-microarray approach to define the B. burgdorferi transcriptomes in fed larvae, fed nymphs and in mammalian host-adapted organisms cultivated in dialysis membrane chambers. The results show clearly that spirochetes exhibit unique expression profiles during each tick stage and during cultivation within the mammal; importantly, none of these profiles resembles that exhibited by in vitro grown organisms. Profound shifts in transcript levels were observed for genes encoding known or predicted lipoproteins as well as proteins involved in nutrient uptake, carbon utilization and lipid synthesis. Stage-specific expression patterns of chemotaxis-associated genes also were noted, suggesting that the composition and interactivities of the chemotaxis machinery components vary considerably in the feeding tick and mammal. The results as a whole make clear that environmental sensing by B. burgdorferi directly or indirectly drives an extensive and tightly integrated modulation of cell envelope constituents, chemotaxis/motility machinery, intermediary metabolism and cellular physiology. These findings provide the necessary transcriptional framework for delineating B. burgdorferi regulatory pathways throughout the enzootic cycle as well as defining the contribution(s) of individual genes to spirochete survival in nature and virulence in humans.


Assuntos
Borrelia burgdorferi/genética , Ixodes/microbiologia , Estágios do Ciclo de Vida , Doença de Lyme/microbiologia , Transcriptoma , Adaptação Fisiológica , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/crescimento & desenvolvimento , Borrelia burgdorferi/patogenicidade , Borrelia burgdorferi/fisiologia , Metabolismo dos Carboidratos/genética , Membrana Celular/metabolismo , Movimento Celular , Parede Celular/metabolismo , Quimiotaxia/genética , Regulação Bacteriana da Expressão Gênica , Ixodes/crescimento & desenvolvimento , Larva/microbiologia , Estágios do Ciclo de Vida/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C3H , Ninfa/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Fator sigma/genética , Fator sigma/metabolismo
14.
BMC Microbiol ; 16(1): 141, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27400788

RESUMO

BACKGROUND: Similar to Gram-negative organisms, Borrelia spirochetes are dual-membrane organisms with both an inner and outer membrane. Although the outer membrane contains integral membrane proteins, few of the borrelial outer membrane proteins (OMPs) have been identified and characterized to date. Therefore, we utilized a consensus computational network analysis to identify novel borrelial OMPs. RESULTS: Using a series of computer-based algorithms, we selected all protein-encoding sequences predicted to be OM-localized and/or to form ß-barrels in the borrelial OM. Using this system, we identified 41 potential OMPs from B. burgdorferi and characterized three (BB0838, BB0405, and BB0406) to confirm that our computer-based methodology did, in fact, identify borrelial OMPs. Triton X-114 phase partitioning revealed that BB0838 is found in the detergent phase, which would be expected of a membrane protein. Proteolysis assays indicate that BB0838 is partially sensitive to both proteinase K and trypsin, further indicating that BB0838 is surface-exposed. Consistent with a prior study, we also confirmed that BB0405 is surface-exposed and associates with the borrelial OM. Furthermore, we have shown that BB0406, the product of a co-transcribed downstream gene, also encodes a novel, previously uncharacterized borrelial OMP. Interestingly, while BB0406 has several physicochemical properties consistent with it being an OMP, it was found to be resistant to surface proteolysis. Consistent with BB0405 and BB0406 being OMPs, both were found to be capable of incorporating into liposomes and exhibit pore-forming activity, suggesting that both proteins are porins. Lastly, we expanded our computational analysis to identify OMPs from other borrelial organisms, including both Lyme disease and relapsing fever spirochetes. CONCLUSIONS: Using a consensus computer algorithm, we generated a list of candidate OMPs for both Lyme disease and relapsing fever spirochetes and determined that three of the predicted B. burgdorferi proteins identified were indeed novel borrelial OMPs. The combined studies have identified putative spirochetal OMPs that can now be examined for their roles in virulence, physiology, and disease pathogenesis. Importantly, the studies described in this report provide a framework by which OMPs from any human pathogen with a diderm ultrastructure could be cataloged to identify novel virulence factors and vaccine candidates.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Borrelia burgdorferi/química , Algoritmos , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Redes de Comunicação de Computadores , Metodologias Computacionais , Consenso , Genoma Bacteriano , Humanos , Lipossomos/metabolismo , Doença de Lyme/microbiologia , Óperon , Porinas/metabolismo , Potência de Vacina , Fatores de Virulência/metabolismo
15.
J Bacteriol ; 197(11): 1906-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25825429

RESUMO

UNLABELLED: We recently demonstrated that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses characteristic BamA bipartite topology. Herein, we used immunofluorescence analysis (IFA) to show that only the ß-barrel domain of TP_0326 contains surface-exposed epitopes in intact T. pallidum. Using the solved structure of Neisseria gonorrhoeae BamA, we generated a homology model of full-length TP_0326. Although the model predicts a typical BamA fold, the ß-barrel harbors features not described in other BamAs. Structural modeling predicted that a dome comprised of three large extracellular loops, loop 4 (L4), L6, and L7, covers the barrel's extracellular opening. L4, the dome's major surface-accessible loop, contains mainly charged residues, while L7 is largely neutral and contains a polyserine tract in a two-tiered conformation. L6 projects into the ß-barrel but lacks the VRGF/Y motif that anchors L6 within other BamAs. IFA and opsonophagocytosis assay revealed that L4 is surface exposed and an opsonic target. Consistent with B cell epitope predictions, immunoblotting and enzyme-linked immunosorbent assay (ELISA) confirmed that L4 is an immunodominant loop in T. pallidum-infected rabbits and humans with secondary syphilis. Antibody capture experiments using Escherichia coli expressing OM-localized TP_0326 as a T. pallidum surrogate further established the surface accessibility of L4. Lastly, we found that a naturally occurring substitution (Leu(593) → Gln(593)) in the L4 sequences of T. pallidum strains affects antibody binding in sera from syphilitic patients. Ours is the first study to employ a "structure-to-pathogenesis" approach to map the surface topology of a T. pallidum OMP within the context of syphilitic infection. IMPORTANCE: Previously, we reported that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses the bipartite topology characteristic of a BamA ortholog. Using a homology model as a guide, we found that TP_0326 displays unique features which presumably relate to its function(s) in the biogenesis of T. pallidum's unorthodox OM. The model also enabled us to identify an immunodominant epitope in a large extracellular loop that is both an opsonic target and subject to immune pressure in a human population. Ours is the first study to follow a structure-to-pathogenesis approach to map the surface topology of a T. pallidum rare OMP within the context of syphilitic infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Epitopos Imunodominantes/química , Epitopos Imunodominantes/imunologia , Proteínas Opsonizantes/imunologia , Sífilis/imunologia , Treponema pallidum/química , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/genética , Humanos , Epitopos Imunodominantes/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Sífilis/microbiologia , Treponema pallidum/genética , Treponema pallidum/imunologia
16.
J Struct Biol ; 192(1): 48-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26321039

RESUMO

Two-component signal transduction systems are the primary mechanisms by which bacteria perceive and respond to changes in their environment. The Hk1/Rrp1 two-component system (TCS) in Borrelia burgdorferi consists of a hybrid histidine kinase and a response regulator with diguanylate cyclase activity, respectively. Phosphorylated Rrp1 catalyzes the synthesis of c-di-GMP, a second messenger associated with bacterial life-style control networks. Spirochetes lacking either Hk1 or Rrp1 are virulent in mice but destroyed within feeding ticks. Activation of Hk1 by exogenous stimuli represents the seminal event for c-di-GMP signaling. We reasoned that structural characterization of Hk1's sensor would provide insights into the mechanism underlying signal transduction and aid in the identification of activating ligands. The Hk1 sensor is composed of three ligand-binding domains (D1-3), each with homology to periplasmic solute-binding proteins (PBPs) typically associated with ABC transporters. Herein, we determined the structure for D1, the most N-terminal PBP domain. As expected, D1 displays a bilobed Venus Fly Trap-fold. Similar to the prototypical sensor PBPs HK29S from Geobacter sulfurreducens and VFT2 from Bordetella pertussis, apo-D1 adopts a closed conformation. Using complementary approaches, including SAXS, we established that D1 forms a dimer in solution. The D1 structure enabled us to model the D2 and D3 domains. Differences in the ligand-binding pockets suggest that each PBP recognizes a different ligand. The ability of Hk1 to recognize multiple stimuli provides spirochetes with a means of distinguishing between the acquisition and transmission blood meals and generate a graded output response that is reflective of the perceived environmental threats.


Assuntos
Borrelia burgdorferi/enzimologia , Proteínas Periplásmicas/química , Proteínas Quinases/química , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Histidina Quinase , Modelos Moleculares , Dados de Sequência Molecular , Periplasma/enzimologia , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
17.
Infect Immun ; 83(8): 3043-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25987708

RESUMO

Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission.


Assuntos
Proteínas de Bactérias/genética , Borrelia burgdorferi/crescimento & desenvolvimento , Borrelia burgdorferi/metabolismo , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/microbiologia , Carrapatos/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/genética , GMP Cíclico/metabolismo , Feminino , Humanos , Doença de Lyme/transmissão , Camundongos , Camundongos Endogâmicos C3H , Viabilidade Microbiana , Ratos , Ratos Sprague-Dawley , Carrapatos/fisiologia
18.
PLoS Pathog ; 9(12): e1003841, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367266

RESUMO

The Lyme disease spirochete Borrelia burgdorferi must differentially express genes and proteins in order to survive in and transit between its tick vector and vertebrate reservoir. The putative DEAH-box RNA helicase, HrpA, has been recently identified as an addition to the spirochete's global regulatory machinery; using proteomic methods, we demonstrated that HrpA modulates the expression of at least 180 proteins. Although most bacteria encode an HrpA helicase, RNA helicase activity has never been demonstrated for HrpAs and the literature contains little information on the contribution of this protein to bacterial physiology or pathogenicity. In this work, we report that B. burgdorferi HrpA has RNA-stimulated ATPase activity and RNA helicase activity and that this enzyme is essential for both mammalian infectivity by syringe inoculation and tick transmission. Reduced infectivity of strains carrying mutations in the ATPase and RNA binding motif mutants suggests that full virulence expression requires both ATPase and coupled helicase activity. Microarray profiling revealed changes in RNA levels of two-fold, or less in an hrpA mutant versus wild-type, suggesting that the enzyme functions largely or exclusively at the post-transcriptional level. In this regard, northern blot analysis of selected gene products highly regulated by HrpA (bb0603 [p66], bba74, bb0241 [glpK], bb0242 and bb0243 [glpA]) suggests a role for HrpA in the processing and translation of transcripts. In addition to being the first demonstration of RNA helicase activity for a bacterial HrpA, our data indicate that the post-transcriptional regulatory functions of this enzyme are essential for maintenance of the Lyme disease spirochete's enzootic cycle.


Assuntos
Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidade , Ixodes/microbiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , RNA Helicases/fisiologia , Processamento Pós-Transcricional do RNA/genética , Animais , Proteínas de Bactérias/fisiologia , Células Cultivadas , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Organismos Geneticamente Modificados , Virulência/genética
19.
BMC Infect Dis ; 15: 479, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26511465

RESUMO

BACKGROUND: Syphilis remains a global public health threat and can lead to severe complications. In addition to resolution of clinical manifestations, a reduction in nontreponemal antibody titers after treatment is regarded as "proof of cure." However, some patients manifest < 4-fold decline ("serological non-response") or persistently positive nontreponemal titers despite an appropriate decline ("serofast") that may represent treatment failure, reinfection, or a benign immune response. To delineate these treatment phenomena, we conducted a systematic review of the literature regarding serological outcomes and associated factors among HIV-infected and -uninfected subjects. METHODS: Six databases (PubMed, Embase, CINAHL, Web of Science, Scopus, and BIOSIS) were searched with no date restrictions. Relevant articles that evaluated serological treatment responses and correlates of serological cure (≥ four-fold decline in nontreponemal titers) were included. RESULTS: We identified 1693 reports in the literature, of which 20 studies met selection criteria. The median proportion of patients who had serological non-response was 12.1% overall (interquartile range, 4.9-25.6), but varied depending on the time points after therapy. The serofast proportion could only be estimated from 2 studies, which ranged from 35.2-44.4%. Serological cure was primarily associated with younger age, higher baseline nontreponemal titers, and earlier syphilis stage. The relationship between serological cure and HIV status was inconsistent; among HIV-infected patients, CD4 count and HIV viral load was not associated with serological cure. CONCLUSIONS: Serological non-response and the serofast state are common syphilis treatment outcomes, highlighting the importance of determining the immunological and clinical significance of persistent nontreponemal antibody titers after therapy.


Assuntos
Infecções por HIV/virologia , Sorodiagnóstico da Sífilis , Sífilis/tratamento farmacológico , Fatores Etários , Contagem de Linfócito CD4 , Infecções por HIV/tratamento farmacológico , Humanos , Sífilis/microbiologia , Falha de Tratamento , Resultado do Tratamento , Carga Viral
20.
Proc Natl Acad Sci U S A ; 109(8): 3059-64, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22315410

RESUMO

The Lyme disease spirochete Borrelia burgdorferi exists in nature in an enzootic cycle that involves the arthropod vector Ixodes scapularis and mammalian reservoirs. To disseminate within and between these hosts, spirochetes must migrate through complex, polymeric environments such as the basement membrane of the tick midgut and the dermis of the mammal. To date, most research on the motility of B. burgdorferi has been done in media that do not resemble the tissue milieus that B. burgdorferi encounter in vivo. Here we show that the motility of Borrelia in gelatin matrices in vitro resembles the pathogen's movements in the chronically infected mouse dermis imaged by intravital microscopy. More specifically, B. burgdorferi motility in mouse dermis and gelatin is heterogeneous, with the bacteria transitioning between at least three different motility states that depend on transient adhesions to the matrix. We also show that B. burgdorferi is able to penetrate matrices with pore sizes much smaller than the diameter of the bacterium. We find a complex relationship between the swimming behavior of B. burgdorferi and the rheological properties of the gelatin, which cannot be accounted for by recent theoretical predictions for microorganism swimming in gels. Our results also emphasize the importance of considering borrelial adhesion as a dynamic rather than a static process.


Assuntos
Borrelia burgdorferi/efeitos dos fármacos , Borrelia burgdorferi/fisiologia , Derme/efeitos dos fármacos , Derme/microbiologia , Gelatina/farmacologia , Doença de Lyme/microbiologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Cinética , Metilcelulose/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Movimento/efeitos dos fármacos , Reologia/efeitos dos fármacos , Soluções , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA