Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39310738

RESUMO

Extracellular vesicles (EVs) have emerged as a fascinating area of research in molecular biology, with diverse therapeutic applications. These small membrane-bound structures, released by cells into the extracellular space, play a crucial role in intercellular communication and hold great potential for advancing medical treatments. The aim of this study is to have a narrative review on the use and therapeutic applications of EVs. Their unique characteristics, including stability, biocompatibility, and the ability to traverse biological barriers, make them promising tools for targeted drug delivery. By engineering EVs to encapsulate specific cargo molecules, such as therapeutic proteins, small interfering RNA (siRNA), or anti-cancer drugs, researchers can enhance drug stability and improve targeted delivery to desired cells or tissues. This approach can minimize off-target effects and improve therapeutic efficacy. Based on our literature search, we found that EVs can be used as biomarkers to predict diseases. Although much progress has been made in understanding the biology and function of exosomes, there are still unanswered questions that require further research. This includes identifying appropriate and safe techniques for producing exosomes in large quantities, determining which types of cells are suitable for exosome donor cells for therapeutic purposes, and investigating the safety of exosomes in human studies. Overall, the use of exosomes in clinical therapeutic applications requires a strong understanding of molecular signaling cascades and exosome profiles, as well as the specificity and sensitivity of biomarker and drug delivery methods.

2.
Int J Biochem Mol Biol ; 15(4): 118-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309614

RESUMO

In this paper, we explore marine bioactive peptides with anticancer potential sourced from various marine organisms, including tunicates, sea sponges, and mollusks. Peptides like Stylisin and Papuamides have been isolated, identified, and modified to enhance their activity, with many advancing to clinical trials due to their diverse biological activities, promising prospects in medicine. Enzymatic hydrolysis is a favored method for extracting peptides from marine proteins, particularly from sponges known for their rich bioactive compounds. Compounds such as Jaspamide and Homophymins exhibit potent cytotoxic activity against cancer cells, underscoring their therapeutic potential. Additionally, peptides from ascidians and mollusks, such as Aplidine and Kahalalide F, demonstrate significant anticancer properties. This study also explores peptides influencing apoptosis, microtubule dynamics, and angiogenesis, providing insights into potential mechanisms for cancer treatment. While peptides like Neovastat and mycothiazole target known pathways, others such as patellamides act through unknown mechanisms, highlighting the intricate interactions of marine peptides with cancer cells. Overall, marine-derived peptides show promise as valuable candidates for developing novel anticancer therapies.

3.
Int J Biochem Mol Biol ; 15(4): 100-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309615

RESUMO

Marine environments harbor a wealth of bioactive peptides with potential anticancer properties, sourced from diverse organisms like tunicates, sea sponges, and mollusks. Through isolation, identification, and modification, peptides such as Stylisin and Papuamides have shown enhanced activity and progressed to clinical trials, underscoring their therapeutic promise. Enzymatic hydrolysis emerges as a favored method for peptide extraction from marine proteins, with sponges identified as particularly rich sources. Compounds like Jaspamide and Homophymins exhibit potent cytotoxic activity against cancer cells, highlighting their therapeutic potential. Additionally, peptides from ascidians and mollusks, including Aplidine and Kahalalide F, demonstrate significant anticancer properties. The study delves into peptides affecting apoptosis, microtubule dynamics, and angiogenesis inhibition, offering insights into potential cancer treatment mechanisms. Marine-derived peptides hold great promise as valuable candidates for novel anticancer therapies, with ongoing research aimed at unlocking their full therapeutic benefits.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38618492

RESUMO

Extracellular vesicles (EVs) have emerged as a captivating field of study in molecular biology with diverse applications in therapeutics. These small membrane-bound structures, released by cells into the extracellular space, play a vital role in intercellular communication and hold immense potential for advancing medical treatments. EVs, including exosomes, microvesicles, and apoptotic bodies, are classified based on size and biogenesis pathways, with exosomes being the most extensively studied. The aim of this study was to examine the molecular secretory pathway of exosomes and to discuss the medical applications of exosomes and the methods for employing them in laboratory models. The therapeutic potential of EVs has garnered significant attention. Their unique properties, such as stability, biocompatibility, and capacity to traverse biological barriers, make them promising vehicles for targeted drug delivery. By engineering EVs to carry specific cargo molecules, such as therapeutic proteins, small interfering Ribonucleic Acid (RNAs) (siRNAs), or anti-cancer drugs, researchers can enhance drug stability and improve their targeted delivery to specific cells or tissues. This approach has the potential to minimize off-target effects and increase therapeutic efficacy, offering a more precise and effective treatment strategy. EVs represent a captivating and rapidly evolving field with significant therapeutic implications. Their role in intercellular communication, targeted drug delivery, and regenerative medicine makes them valuable tools for advancing medical treatments. As our understanding of EV biology and their therapeutic applications continues to expand, we can expect remarkable advancements that will revolutionize the field of medicine and lead to more personalized and effective therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA