Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Biometeorol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722337

RESUMO

Phenological shifts are one of the most visible signs of climatic variability and change in the biosphere. However, modeling plant phenological responses has always been a key challenge due to climatic variability and plant adaptation. Grapevine is a phenologically sensitive crop and, thus, its developmental stages are affected by the increase in temperature. The goal of this study was to develop a temperature-based grapevine phenology model (GPM) for predicting key developmental stages for different table grape cultivars for a non-traditional viticulture zone in south Asia. Experiments were conducted in two vineyards at two locations (Chakwal and Islamabad) in the Pothawar region of Pakistan during the 2019 and 2020 growing seasons for four cultivars including Perlette, King's Ruby, Sugraone and NARC Black. Detailed phenological observations were obtained starting in January until harvest of the grapes. The Mitscherlich monomolecular equation was used to develop the phenology model for table grapes. There was a strong non-linear correlation between the Eichhorn and Lorenz phenological (ELP) scale and growing degree days (GDD) for all cultivars with coefficient of determinations (R2) ranging from 0.90 to 0.94. The results for model development indicated that GPM was able to predict phenological stages with high skill scores, i.e., a root mean square (RMSE) of 2.14 to 2.78 and mean absolute error (MAE) of 1.86 to 2.26 days. The prediction variability of the model for the onset timings of phenological stages was up to 3 days. The results also reveal that the phenology model based on GDD approach provides an efficient planning tool for viticulture industry in different grape growing regions. The proposed methodology, being a simpler one, can be easily applied to other regions and cultivars as a predictor for grapevine phenology.

2.
Int J Biometeorol ; 67(11): 1881-1896, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37718384

RESUMO

Rising air temperature due to climate change has posed a mammoth challenge to global viticulture and key berry quality traits are compromised. Exploring the effects of seasonal temperature variability on berry ripening and quality attributes in different viticulture regions may help in sustainable viticulture industry. The present research was designed to explore the effect of temperature variables on key quality attributes of table grape cultivars in Pothwar region of Pakistan. Key berry quality traits such as total soluble solids (TSS), titratable acidity (TA), maturity indices (MI), ascorbic acid, sugars, total polyphenol contents (TPC) and total anthocyanin contents (TAC) were unlocked for four important table grape cultivars under varying environmental conditions at Chakwal and Islamabad districts for two consecutive vintages of 2019 and 2020. The district Chakwal has up to 0.92 °C, 1.35 °C, 1.12°C and 0.81°C higher Tmin, Tmax, Tmean and diurnal temperature variation (DTV) respectively, compared to Islamabad particularly for the 2019 vintage. The results of the present study revealed that the warmer site (Chakwal) has significantly (P ≤0.05) higher juice pH, TSS (°brix) and maturity indices (MI) particularly for the relatively hotter vintage of 2019. Interestingly, MI was 33% higher for the relatively warmer vintage of 2019 compared to 2020 with relatively lower acidity (up to 38%). Moreover, higher titratable acidity (11.2%), ascorbic acid (28.5%), polyphenols (20.3%) and anthocyanins (10.6%) were noticed for the colder Islamabad compared to Chakwal. Although elevated temperature for warmer location and vintage favoured berry ripening, however key biochemical attributes such as titratable acidity, ascorbic acid, polyphenols and anthocyanins were negatively affected. The findings of the present research provide useful insight into the impact of growing season temperature on key berry attributes and may help devise adaptation strategies to improve berry quality.

3.
Int J Biometeorol ; 67(5): 745-759, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36943495

RESUMO

Progressive warming of the grape growing regions has reduced the land capability for sustainable grapevine production and the geographical distribution of grapes. Bud burst, blooming, berry set, veraison, and harvest are the key phenological stages of grapevine, and are crucial for managing vineyard activities. The objective of this study was to evaluate the effect of seasonal temperature variability on the timing of key phenological stages of table grape cultivars in a new emerging viticulture region, i.e., the Pothwar region of Pakistan. Phenological stages of four table grape cultivars were recorded during two consecutive growing seasons at two locations. All phenological stages were attained earlier for the relatively warmer location, i.e., Chakwal. Similarly, the length of the growing season from bud burst to harvest was 15 to 21 days longer for the 2020 growing season than for the 2019 growing season, which corresponds to the inter-annual temperature variability. Moreover, the grapevine cultivars showed a distinct response for each growth phase; cv. Perlette matured earlier while cv. NARC Black was the last to ripen. Despite the large variability in the length of the active growing period from bud burst to harvest, accumulated growing degree days (GDD) varied only in a narrow range, i.e., 1510-1557 for cv. Perlette, 1641-1683 for cv. King's Ruby, 1744-1770 for cv. Sugraone, and 1869-1906 for cv. NARC Black. This implies that seasonal temperature variability using GDD is a better indicator for the phenology of table grape cultivars compared to regular time. It is clear from the results from this study that the variation in phenological responses of table grape cultivars due to temperature differences necessitates genotype and site-specific vineyard management.


Assuntos
Temperatura , Vitis , Mudança Climática , Frutas , Reprodução , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA