Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Immunity ; 56(5): 1098-1114.e10, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37003256

RESUMO

Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.


Assuntos
Microbiota , Infecções Respiratórias , Animais , Feminino , Camundongos , Gravidez , Células Dendríticas , Dieta , Propionatos
2.
J Immunol ; 208(12): 2806-2816, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35675958

RESUMO

Infants with attenuated type III IFN (IFN-λ) responses are at increased risk of severe lower respiratory tract infection (sLRI). The IL-28Rα-chain and IL-10Rß-chain form a heterodimeric receptor complex, necessary for IFN-λ signaling. Therefore, to better understand the immunopathogenic mechanisms through which an IFN-λlo microenvironment predisposes to a sLRI, we inoculated neonatal wild-type and IL-28R-deficient (IL-28R -/-) mice with pneumonia virus of mice, a rodent-specific pneumovirus. Infected IL-28R -/- neonates displayed an early, pronounced, and persistent neutrophilia that was associated with enhanced reactive oxygen species (ROS) production, NETosis, and mucus hypersecretion. Targeted deletion of the IL-28R in neutrophils was sufficient to increase neutrophil activation, ROS production, NET formation, and mucus production in the airways. Inhibition of protein-arginine deiminase type 4 (PAD4), a regulator of NETosis, had no effect on myeloperoxidase expression, citrullinated histones, and the magnitude of the inflammatory response in the lungs of infected IL-28R -/- mice. In contrast, inhibition of ROS production decreased NET formation, cellular inflammation, and mucus hypersecretion. These data suggest that IFN-λ signaling in neutrophils dampens ROS-induced NETosis, limiting the magnitude of the inflammatory response and mucus production. Therapeutics that promote IFN-λ signaling may confer protection against sLRI.


Assuntos
Bronquiolite Viral , Armadilhas Extracelulares , Interferons/metabolismo , Animais , Animais Recém-Nascidos , Bronquiolite Viral/metabolismo , Bronquiolite Viral/patologia , Armadilhas Extracelulares/metabolismo , Humanos , Camundongos , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Espécies Reativas de Oxigênio/metabolismo
3.
Am J Respir Crit Care Med ; 205(3): 300-312, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34860143

RESUMO

Rationale: The alarmins IL-33 and HMGB1 (high mobility group box 1) contribute to type 2 inflammation and asthma pathogenesis. Objectives: To determine whether P2Y13-R (P2Y13 receptor), a purinergic GPCR (G protein-coupled receptor) and risk allele for asthma, regulates the release of IL-33 and HMGB1. Methods: Bronchial biopsy specimens were obtained from healthy subjects and subjects with asthma. Primary human airway epithelial cells (AECs), primary mouse AECs, or C57Bl/6 mice were inoculated with various aeroallergens or respiratory viruses, and the nuclear-to-cytoplasmic translocation and release of alarmins was measured by using immunohistochemistry and an ELISA. The role of P2Y13-R in AEC function and in the onset, progression, and exacerbation of experimental asthma was assessed by using pharmacological antagonists and mice with P2Y13-R gene deletion. Measurements and Main Results: Aeroallergen exposure induced the extracellular release of ADP and ATP, nucleotides that activate P2Y13-R. ATP, ADP, and aeroallergen (house dust mite, cockroach, or Alternaria antigen) or virus exposure induced the nuclear-to-cytoplasmic translocation and subsequent release of IL-33 and HMGB1, and this response was ablated by genetic deletion or pharmacological antagonism of P2Y13. In mice, prophylactic or therapeutic P2Y13-R blockade attenuated asthma onset and, critically, ablated the severity of a rhinovirus-associated exacerbation in a high-fidelity experimental model of chronic asthma. Moreover, P2Y13-R antagonism derepressed antiviral immunity, increasing IFN-λ production and decreasing viral copies in the lung. Conclusions: We identify P2Y13-R as a novel gatekeeper of the nuclear alarmins IL-33 and HMGB1 and demonstrate that the targeting of this GPCR via genetic deletion or treatment with a small-molecule antagonist protects against the onset and exacerbations of experimental asthma.


Assuntos
Asma/imunologia , Proteína HMGB1/metabolismo , Interleucina-33/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Asma/metabolismo , Asma/fisiopatologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL
4.
J Environ Public Health ; 2023: 3369163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36684485

RESUMO

Background: The river Buriganga, one of the major dumping zones of industrial wastes in Bangladesh, is responsible for contaminating the drinking water sources along its length. This study aimed to assess the water quality from these sources by monitoring the changes in hematological, biochemical, and histological parameters caused in healthy rats due to their consumption. Methods: Using ethylenediaminetetraacetic acid (EDTA) as an anticoagulant agent, hematological and biochemical analyses of Sprague-Dawley rat models were executed in this study. Following blood sampling, the rats were sacrificed, and the heart, lungs, kidneys, liver, and spleen were separated to carry out the histological analysis. Later, to perform the statistical analysis, SPSS, V.25.0 was utilized. Results: A significant rise (p < 0.02) in body weight was recorded due to increased protein synthesis, inflammations; increased lymphocyte, white blood cell (WBC), and neutrophil count but hemoglobin (20.0 ± 1.39 g/dL vs. 15.25 ± 0.36 g/dL; p) and red blood cell (RBC) count ((6.24 ± 0.45) × 106/µL vs. (5.47 ± 0.34) × 106/µL)) decreased due to infections and hematopoietic stem cell poisoning by pathogens in water samples. Elevated (p < 0.01) serum urea, creatinine, alanine, and aspartate aminotransferase levels indicated kidney malfunction and hepatic tissue necrosis. Histological analysis revealed gross lesions, internal hemorrhages in the brain; inflammations, granulomas, migrating macrophages in the spleen; fibrosis (resulting in hypo-perfusion), and collagen formation in cardiac muscles. Conclusions: The findings in this study provide comprehensive evidence, based on in vivo analysis, that the water bodies around the Buriganga river are likely to be contaminated with toxic chemicals and microbial entities making them unfit for human consumption.


Assuntos
Água Potável , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Rios , Bangladesh , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA