Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194705

RESUMO

Epilepsy is one of the most prevalent chronic neurological disorders characterized by frequent unprovoked epileptic seizures. Epileptic seizures can develop from a broad range of underlying abnormalities such as tumours, strokes, infections, traumatic brain injury, developmental abnormalities, autoimmune diseases, and genetic predispositions. Sometimes epilepsy is not easily diagnosed and treated due to the large diversity of symptoms. Undiagnosed and untreated seizures deteriorate over time, impair cognition, lead to injuries, and can sometimes result in death. This review gives details about epilepsy, its classification on the basis of International League Against Epilepsy, current therapeutics which are presently offered for the treatment of epilepsy. Despite of the fact that more than 30 different anti-epileptic medication and antiseizure drugs are available, large number of epileptic patients fail to attain prolonged seizure independence. Poor onsite bioavailability of drugs due to blood brain barrier poses a major challenge in drug delivery to brain. The present review covers the limitations with the state-of-the-art strategies for managing seizures and emphasizes the role of nanotechnology in overcoming these issues. Various nano-carriers like polymeric nanoparticles, dendrimers, lipidic nanoparticles such as solid lipid nanoparticles, nano-lipid carriers, have been explored for the delivery of anti-epileptic drugs to brain using oral and intranasal routes. Nano-carries protect the encapsulated drugs from degradation and provide a platform to deliver controlled release over prolonged periods, improved permeability and bioavailability at the site of action. The review also emphasises in details about the role of neuropeptides for the treatment of epilepsy.


Assuntos
Epilepsia , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Anticonvulsivantes/metabolismo , Anticonvulsivantes/uso terapêutico , Encéfalo/metabolismo , Nanotecnologia
2.
ACS Omega ; 9(12): 13982-13993, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559969

RESUMO

EIDD-1931 is the active form of molnupiravir, an orally effective drug approved by the United States Food and Drug Administration (USFDA) against COVID-19. Pharmacokinetic alteration can cause untoward drug interaction (drug-drug/disease-drug), but hardly any information is known about this recently approved drug. Therefore, we first investigated the impact of the arthritis state on the oral pharmacokinetics of EIDD-1931 using a widely accepted complete Freund's adjuvant (CFA)-induced rat model of rheumatoid arthritis (RA) after ascertaining the disease occurrence by paw swelling measurement and X-ray examination. Comparative oral pharmacokinetic assessment of EIDD-1931 (normal state vs arthritis state) showed that overall plasma exposure was augmented (1.7-fold) with reduced clearance (0.54-fold), suggesting its likelihood of dose adjustment in arthritis conditions. In order to elucidate the effect of EIDD-1931 treatment at a therapeutic regime (normal state vs arthritis state) on USFDA-recommended panel of cytochrome P450 (CYP) enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) for drug interaction using the same disease model, we monitored protein and mRNA expressions (rat homologs) in liver tissue by western blotting (WB) and real time-polymerase chain reaction (RT-PCR), respectively. Results reveal that EIDD-1931 treatment could strongly influence CYP3A4 and CYP2C8 among experimental proteins/mRNAs. Although CYP2C8 regulation upon EIDD-1931 treatment resembles similar behavior under the arthritis state, results dictate a potentially reverse phenomenon for CYP3A4. Moreover, the lack of any CYP inhibitory effect by EIDD-1931 in human/rat liver microsomes (HLM/RLM) helps to ascertain EIDD-1931 treatment-mediated disease-drug interaction and the possibility of drug-drug interaction with disease-modifying antirheumatic drugs (DMARDs) upon coadministration. As elevated proinflammatory cytokine levels are prevalent in RA and nuclear factor-kappa B (NF-kB) and nuclear receptors control CYP expressions, further studies should focus on understanding the regulation of affected CYPs to subside unexpected drug interaction.

3.
Front Plant Sci ; 14: 1165687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143871

RESUMO

Salt stress adversely influences growth, development, and productivity in plants, resulting in a limitation on agriculture production worldwide. Therefore, this study aimed to investigate the effect of four different salts, i.e., NaCl, KCl, MgSO4, and CaCl2, applied at various concentrations of 0, 12.5, 25, 50, and 100 mM on the physico-chemical properties and essential oil composition of M. longifolia. After 45 days of transplantation, the plants were irrigated at different salinities at 4-day intervals for 60 days. The resulting data revealed a significant reduction in plant height, number of branches, biomass, chlorophyll content, and relative water content with rising concentrations of NaCl, KCl, and CaCl2. However, MgSO4 poses fewer toxic effects than other salts. Proline concentration, electrolyte leakage, and DPPH inhibition (%) increase with increasing salt concentrations. At lower-level salt conditions, we had a higher essential oil yield, and GC-MS analysis reported 36 compounds in which (-)-carvone and D-limonene covered the most area by 22%-50% and 45%-74%, respectively. The expression analyzed by qRT-PCR of synthetic Limonene (LS) and Carvone (ISPD) synthetic genes has synergistic and antagonistic relationships in response to salt treatments. To conclude, it can be said that lower levels of salt enhanced the production of essential oil in M. longifolia, which may provide future benefits commercially and medicinally. In addition to this, salt stress also resulted in the emergence of novel compounds in essential oils, for which future strategies are needed to identify the importance of these compounds in M. longifolia.

4.
Chem Biol Interact ; 380: 110524, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146929

RESUMO

CYP2C8 is a crucial CYP isoform responsible for the metabolism of xenobiotics and endogenous molecules. CYP2C8 converts arachidonic acid to epoxyeicosatrienoic acids (EETs) that cause cancer progression. Rottlerin possess significant anticancer actions. However, information on its CYP inhibitory action is lacking in the literature and therefore, we aimed to explore the same using in silico, in vitro, and in vivo approaches. Rottlerin showed highly potent and selective CYP2C8 inhibition (IC50 < 0.1 µM) compared to negligible inhibition (IC50 > 10 µM) for seven other experimental CYPs in human liver microsomes (HLM) (in vitro) using USFDA recommended index reactions. Mechanistic studies reveal that rottlerin could reversibly (mixed-type) block CYP2C8. Molecular docking (in silico) results indicate a strong interaction could occur between rottlerin and the active site of human CYP2C8. Rottlerin boosted the plasma exposure of repaglinide and paclitaxel (CYP2C8 substrates) by delaying their metabolism using the rat model (in vivo). Multiple-dose treatment of rottlerin with CYP2C8 substrates lowered the CYP2C8 protein expression and up-regulated & down-regulated the mRNA for CYP2C12 & CYP2C11 (rat homologs), respectively, in rat liver tissue. Rottlerin substantially hindered the EET formation in HLM. Overall results of rottlerin on CYP2C8 inhibition and EET formation insinuate further exploration for cancer therapy.


Assuntos
Sistema Enzimático do Citocromo P-450 , Neoplasias , Humanos , Ratos , Animais , Citocromo P-450 CYP2C8/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Acetofenonas , Microssomos Hepáticos/metabolismo , Neoplasias/metabolismo
5.
J Clin Diagn Res ; 9(12): NC05-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26816928

RESUMO

INTRODUCTION: Surgery in the presence of zonular weakness or subluxated lens was a great surgical challenge and included intracapsular cataract extraction with anterior chamber IOL implantation or pars plana lensectomy and vitrectomy with a sutured (IOL). Modern surgical approache involves placement of endocapsular flexible PMMA ring that prevents iatrogenic loss of zonular support, minimizing vitreous loss and enables placement of in the bag IOL. AIM: To evaluate frequency and indications of capsular tension ring (CTR) implant and analyse the visual and anatomical outcome in various complicated cataract surgeries. MATERIALS AND METHODS: Retrospective screening of database of 6000 consecutive cataract surgeries was done. BCVA, complete ocular examination with SLEx, intraocular pressure, direct ophthalmoscope, fundus examination with +78/+90D were noted. CTR was implanted in cases where Zonular dialysis of > 3 clock hours was present or capsular bag instability was detected during capsulorhexis or subsequent intraoperative maneuvers. In cases with capsulorrhexis extension, CTR was not implanted. Records were analysed for indication of CTR implant and clinical outcome on Day 1, 1 month and 6 month follow up. RESULTS: In this series CTR implant was done in 45 cases. The indications were hypermature senile cataract in 9 cases, hypermature senile cataract with lens induced glaucoma in 9 cases, pseudoexfoliation syndrome in 9 cases, post blunt injury traumatic cataract in 6 cases, iridochoroidal coloboma in 6 cases, hypermature cataract with pseudoexfoliation and marfan syndrome in 3 cases respectively. Decision of CTR implant was intraoperative in 42 patients. At 6 month follow up, 39 patients had best corrected visual acuity ≥6/12. IOL decentration was detected in only 3 cases, but without any subjective visual complaints. CONCLUSION: As per the results CTR was used very infrequently (0.75%) but remains useful in cataract surgeries with difficult pre and intraoperative conditions. It gives good postoperative result and creates satisfied patients.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 105: 400-11, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23333694

RESUMO

In this study, both experimental and theoretical vibrational spectra of template (hydroxyurea, HU), monomer (N-(4,6-bisacryloyl amino-[1,3,5] triazine-2-yl-)-acryl amide, TAT), and HU-TAT complexes were compared and these were respectively found to be in good agreement. Binding energies of HU, when complexed with different monomers, were computed using second order Moller Plesset theory (MP2) at 6-311++G(d,p) level both in the gas as well as solution phases. HU is an antineoplastic agent extensively being used in the treatment of polycythaemia Vera and thrombocythemia. It is also used to reduce the frequency of painful attacks in sickle cell anemia. It has antiretroviral property in disease like AIDS. All spectral characterizations were made using Density Functional Theory (DFT) at B3LYP employing 6-31+g(2d,2p) basis set. The theoretical values for (13)C and (1)H NMR chemical shifts were found to be in accordance with the corresponding experimental values. Of all different monomers studied for the synthesis of molecularly imprinted polymer (MIP) systems, the monomer TAT (2 mol) was typically found to have a best binding score requisite for complexation with HU (1 mol) at the ground state.


Assuntos
Acrilamida/química , Antineoplásicos/química , Antidrepanocíticos/química , Hidroxiureia/química , Impressão Molecular/métodos , Polímeros/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Triazinas/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-22197346

RESUMO

Study of monomer-template interactions in molecularly imprinted polymer (MIP) is inevitable to comprehend best selectivity at the molecular level in pre-polymer solution. In the present work, binding energies of tryptophan, an amino acid template, complexed with different monomers were computed using second order Moller Plesset theory (MP2) at 6-311++g** level in gas phase. This helped in recommending a generic MIP, suitable for the selective and sensitive diagnosis of tryptophan, in clinical setting as disease biomarker, at primitive level. The tryptophan is an important biomarker owing to its highly regulated physiological process in the treatment of premenstrual dysphoric disorder and pellagra like diseases. Frequency calculations were performed using Density Functional Theory (DFT) at B3LYP employing 6-31+g (2d, 2p) level including thermal and entropy corrections. The monomer, p-nitrophenyl acrylate (2 mol), was adjudged having giving best binding score for the complexation at ground state with tryptophan (1 mol) for MIP development.


Assuntos
Modelos Químicos , Impressão Molecular/métodos , Polímeros/química , Resinas Acrílicas/química , Computadores , Software , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Triptofano/química , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA