Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Membr Biol ; 253(6): 577-587, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33200237

RESUMO

Continuous, dynamic, and controlled membrane remodeling creates flow of information and materials across membranes to sustain life in all biological systems. Multiple nanoscale phenomena of membranes regulate mesoscale processes in cells, which in turn control macro-scale processes in living organisms. Understanding the molecular mechanisms that cells use for membrane homeostasis, i.e., to generate, maintain, and deform the membrane structures has therefore been the mammoth's task in biology. Using the principles of DNA nanotechnology, researchers can now precisely recapitulate the functional interactions of the biomolecules that can now probe, program, and re-program membrane remodeling and associated phenomena. The molecular mechanisms for membrane dynamics developing in vitro conditions in which the membrane modulating components are precisely organized and modulated by DNA nanoscaffolds are adding new chapters in the field of DNA nanotechnology. In this review, we discuss DNA nanodevices-based membrane remodeling and trafficking machineries and their applications in biological systems.


Assuntos
Membrana Celular/química , Sondas de DNA/química , DNA/química , Simulação de Dinâmica Molecular , Nanoestruturas , Nanotecnologia
2.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253502

RESUMO

In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics. This growing interest creates the need for effective methods to quantify cargo on DNA origami nanoparticles. Our study consolidates several previously validated methods focusing on gel-based and fluorescence-based techniques, including multiplexed quantification of protein, peptide, and nucleic acid cargo on these nanoparticles. This work may serve as a valuable resource for groups researchers keen on utilizing DNA origami-based nanoparticles in therapeutic applications.

3.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260393

RESUMO

Current SARS-CoV-2 vaccines have demonstrated robust induction of neutralizing antibodies and CD4+ T cell activation, however CD8+ responses are variable, and the duration of immunity and protection against variants are limited. Here we repurposed our DNA origami vaccine platform, DoriVac, for targeting infectious viruses, namely SARS-CoV-2, HIV, and Ebola. The DNA origami nanoparticle, conjugated with infectious-disease-specific HR2 peptides, which act as highly conserved antigens, and CpG adjuvant at precise nanoscale spacing, induced neutralizing antibodies, Th1 CD4+ T cells, and CD8+ T cells in naïve mice, with significant improvement over a bolus control. Pre-clinical studies using lymph-node-on-a-chip systems validated that DoriVac, when conjugated with antigenic peptides or proteins, induced promising cellular immune responses in human cells. These results suggest that DoriVac holds potential as a versatile, modular vaccine platform, capable of inducing both humoral and cellular immunities. The programmability of this platform underscores its potential utility in addressing future pandemics.

4.
J Inorg Biochem ; 249: 112384, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37776828

RESUMO

Novel zinc porphyrins (trans-A2B2 and A3B type) are reported containing pharmacophoric groups derived from Sorafenib at the meso-positions. The pharmacophoric and bioisosteric modification of Sorafenib was done with 2-methyl-4-nitro-N-phenylaniline. The in-vitro photo-cytotoxicity studies of zinc porphyrins on HeLa cells revealed excellent PDT based autophagy inhibition of cancer cells, with IC50 values between 6.2 to 15.4 µM. The trans-A2B2 type zinc porphyrin with two bioisosteric groups gave better cytotoxicity than A3B type. Molecular docking studies revealed excellent binding with mTOR protein kinase of the designed porphyrins. The confocal studies indicated significant ER localization of trans-A2B2 type zinc porphyrin in HeLa cells along with ROS generation. trans-A2B2 type zinc porphyrin induced ER stress in cancer cells, thereby causing elevation of Ca+2 ions in cytoplasm, which led to cancer cell death via autophagy pathway. The studies suggested that trans-A2B2 and A3B type zinc porphyrins can be developed as theranostic agents for anti-cancer applications.


Assuntos
Fotoquimioterapia , Porfirinas , Humanos , Sorafenibe/farmacologia , Células HeLa , Simulação de Acoplamento Molecular , Medicina de Precisão , Porfirinas/química , Zinco/química , Fármacos Fotossensibilizantes/farmacologia
5.
Nanoscale Adv ; 5(9): 2558-2564, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143798

RESUMO

Three-dimensional DNA nanocages have attracted significant attention for various biomedical applications including targeted bioimaging in vivo. Despite the numerous advantages, the use and in vivo exploration of DNA nanocages are limited as the cellular targeting and intracellular fate of these DNA nanocages within various model systems have not been explored well. Herein, using a zebrafish model system, we provide a detailed understanding of time-, tissue- and geometry-dependent DNA nanocage uptake in developing embryos and larvae. Of all the geometries tested, tetrahedrons showed significant internalization in 72 hours post-fertilized larvae upon exposure, without disturbing the expression of genes involved in embryo development. Our study provides a detailed understanding of the time and tissue-specific uptake of DNA nanocages in the zebrafish embryos and larvae. These findings will provide valuable insights into the internalization and biocompatible potential of DNA nanocages and will help to predict their candidature for biomedical applications.

6.
ACS Nano ; 16(7): 10496-10508, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35715010

RESUMO

Fabrication of nanoscale DNA devices to generate 3D nano-objects with precise control of shape, size, and presentation of ligands has shown tremendous potential for therapeutic applications. The interactions between the cell membrane and different topologies of 3D DNA nanostructures are crucial for designing efficient tools for interfacing DNA devices with biological systems. The practical applications of these DNA nanocages are still limited in cellular and biological systems owing to the limited understanding of their interaction with the cell membrane and endocytic pathway. The correlation between the geometry of DNA nanostructures and their internalization efficiency remains elusive. We investigated the influence of the shape and size of 3D DNA nanostructures on their cellular internalization efficiency. We found that one particular geometry, i.e., the tetrahedral shape, is more favored over other designed geometries for their cellular uptake in 2D and 3D cell models. This is also replicable for cellular processes like cell invasion assays in a 3D spheroid model, and passing the epithelial barriers in in vivo zebrafish model systems. Our work provides detailed information for the rational design of DNA nanodevices for their upcoming biological and biomedical applications.


Assuntos
Nanoestruturas , Peixe-Zebra , Animais , Nanoestruturas/química , DNA/química , Membrana Celular , Endocitose
7.
ACS Appl Bio Mater ; 4(4): 3350-3359, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014420

RESUMO

Multiple endocytic pathways operate on the plasma membrane of cells at any moment with diverse but specific cellular functions. Knowledge of uptake of synthetic nanoparticles and ligands with respect to endocytic pathways is crucial to device the appropriate ligands for therapeutic delivery into differentiated neurons for targeting neuronal diseases. We herein explore the mechanisms of cellular uptake of 3D tetrahedral DNA nanocages at different stages of differentiating neurons. We monitored the uptake, kinetics, and dynamics of DNA cages of different geometries, and interestingly we find a specific pattern and adaptability of the uptake of DNA devices with respect to the geometry of the ligand and specific endocytic pathways. We find that tetrahedral DNA nanocages get endocytosed mostly via clathrin-mediated endocytosis in fully mature neurons. This endocytic uptake and intracellular choreography of DNA nanodevices will help us design the smartly targeted biotherapeutics for targeting neuronal disorders.


Assuntos
Materiais Biocompatíveis/metabolismo , DNA/metabolismo , Modelos Biológicos , Nanopartículas/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Materiais Biocompatíveis/química , Diferenciação Celular , DNA/química , Endocitose , Humanos , Teste de Materiais , Nanopartículas/química , Neuroblastoma/patologia , Neurônios/patologia , Tamanho da Partícula , Células Tumorais Cultivadas
8.
ACS Appl Bio Mater ; 3(11): 7265-7277, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019470

RESUMO

DNA nanotechnology is a unique field that provides simple yet robust design techniques for self-assembling nanoarchitectures with extremely high potential for biomedical applications. Though the field began to exploit DNA to build various nanoscale structures, it has now taken a different path, diverging from the creation of complex structures to functional DNA nanodevices that explore various biological systems and mechanisms. Here, we present a brief overview of DNA nanotechnology, summarizing the key strategies for construction of various DNA nanodevices, with special focus on three-dimensional (3D) nanocages or polyhedras. We then discuss biological applications of 3D DNA nanocages, particularly tetrahedral DNA cages, in their ability to program and modulate cellular systems, in biosensing, and as tools for targeted therapeutics. We conclude with a final discussion on challenges and perspectives of 3D DNA nanodevices in biomedical applications.

9.
ACS Omega ; 5(48): 30767-30774, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33324786

RESUMO

Nanoscale systems have increasingly been used in biomedical applications, enhancing the demand for the development of biomolecule-functionalized nanoparticles for targeted applications. Such designer nanosystems hold great prospective to refine disease diagnosis and treatment. To completely investigate their potential for bioapplications, nanoparticles must be biocompatible and targetable toward explicit receptors to guarantee particular detecting, imaging, and medication conveyance in complex organic milieus, for example, living cells, tissues, and organisms. We present recent works that explore enhanced biocompatibility and biorecognition of nanoparticles functionalized with DNA and different DNA entities such as aptamers, DNAzymes, and aptazymes. We sum up the methods utilized in the amalgamation of complex nanostructures, survey the significant types of multifunctional nanoparticles that have been developed in the course of recent years, and give a perceptual vision of the significant field of nanomedicine. The field of DNA-functionalized nanoparticles holds an incredible guarantee in rising biomedical zones, for example, multimodal imaging, theranostics, and picture-guided treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA