Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 151(6): 1185-99, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23217706

RESUMO

Reprogramming of cellular metabolism is a key event during tumorigenesis. Despite being known for decades (Warburg effect), the molecular mechanisms regulating this switch remained unexplored. Here, we identify SIRT6 as a tumor suppressor that regulates aerobic glycolysis in cancer cells. Importantly, loss of SIRT6 leads to tumor formation without activation of known oncogenes, whereas transformed SIRT6-deficient cells display increased glycolysis and tumor growth, suggesting that SIRT6 plays a role in both establishment and maintenance of cancer. By using a conditional SIRT6 allele, we show that SIRT6 deletion in vivo increases the number, size, and aggressiveness of tumors. SIRT6 also functions as a regulator of ribosome metabolism by corepressing MYC transcriptional activity. Lastly, Sirt6 is selectively downregulated in several human cancers, and expression levels of SIRT6 predict prognosis and tumor-free survival rates, highlighting SIRT6 as a critical modulator of cancer metabolism. Our studies reveal SIRT6 to be a potent tumor suppressor acting to suppress cancer metabolism.


Assuntos
Neoplasias/metabolismo , Sirtuínas/metabolismo , Animais , Proliferação de Células , Regulação para Baixo , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Glicólise , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirtuínas/genética , Transcrição Gênica , Transplante Heterólogo , Proteínas Supressoras de Tumor/genética
2.
Cell ; 147(7): 1628-39, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196736

RESUMO

Hundreds of chromatin regulators (CRs) control chromatin structure and function by catalyzing and binding histone modifications, yet the rules governing these key processes remain obscure. Here, we present a systematic approach to infer CR function. We developed ChIP-string, a meso-scale assay that combines chromatin immunoprecipitation with a signature readout of 487 representative loci. We applied ChIP-string to screen 145 antibodies, thereby identifying effective reagents, which we used to map the genome-wide binding of 29 CRs in two cell types. We found that specific combinations of CRs colocalize in characteristic patterns at distinct chromatin environments, at genes of coherent functions, and at distal regulatory elements. When comparing between cell types, CRs redistribute to different loci but maintain their modular and combinatorial associations. Our work provides a multiplex method that substantially enhances the ability to monitor CR binding, presents a large resource of CR maps, and reveals common principles for combinatorial CR function.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , Genômica/métodos , Código das Histonas , Cromatina/química , Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias , Genoma , Humanos , Células K562
3.
Mol Cell ; 61(1): 170-80, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26687680

RESUMO

Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here, we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of p300, EZH2, or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions, and drug treatments.


Assuntos
Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histonas/metabolismo , Leucemia/metabolismo , Reação em Cadeia da Polimerase Multiplex/métodos , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Código de Barras de DNA Taxonômico , Epigênese Genética/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Histonas/genética , Humanos , Células K562 , Leucemia/genética , Mutação
4.
PLoS Genet ; 17(4): e1009498, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844685

RESUMO

In mammals, cellular identity is defined through strict regulation of chromatin modifications and DNA methylation that control gene expression. Methylation of cytosines at CpG sites in the genome is mainly associated with suppression; however, the reason for enhancer-specific methylation is not fully understood. We used sequential ChIP-bisulfite-sequencing for H3K4me1 and H3K27ac histone marks. By collecting data from the same genomic region, we identified enhancers differentially methylated between these two marks. We observed a global gain of CpG methylation primarily in H3K4me1-marked nucleosomes during mouse embryonic stem cell differentiation. This gain occurred largely in enhancer regions that regulate genes critical for differentiation. The higher levels of DNA methylation in H3K4me1- versus H3K27ac-marked enhancers, despite it being the same genomic region, indicates cellular heterogeneity of enhancer states. Analysis of single-cell RNA-seq profiles demonstrated that this heterogeneity correlates with gene expression during differentiation. Furthermore, heterogeneity of enhancer methylation correlates with transcription start site methylation. Our results provide insights into enhancer-based functional variation in complex biological systems.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Animais , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Nucleossomos/genética , Regiões Promotoras Genéticas/genética , RNA-Seq , Análise de Célula Única , Sítio de Iniciação de Transcrição
5.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941688

RESUMO

Mesenchymal stromal/stem cells (MSCs) form a heterogeneous population of multipotent progenitors that contribute to tissue regeneration and homeostasis. MSCs assess extracellular elasticity by probing resistance to applied forces via adhesion, cytoskeletal, and nuclear mechanotransducers that direct differentiation toward soft or stiff tissue lineages. Even under controlled culture conditions, MSC differentiation exhibits substantial cell-to-cell variation that remains poorly characterized. By single-cell transcriptional profiling of nonconditioned, matrix-conditioned, and early differentiating cells, we identified distinct MSC subpopulations with distinct mechanosensitivities, differentiation capacities, and cell cycling. We show that soft matrices support adipogenesis of multipotent cells and early endochondral ossification of nonadipogenic cells, whereas intramembranous ossification and preosteoblast proliferation are directed by stiff matrices. Using diffusion pseudotime mapping, we outline hierarchical matrix-directed differentiation and perform whole-genome screening of mechanoresponsive genes. Specifically, top-ranked tropomyosin-1 is highly sensitive to stiffness cues both at RNA and protein levels, and changes in TPM1 expression determine the differentiation toward soft versus stiff tissue lineage. Consistent with actin stress fiber stabilization, tropomyosin-1 overexpression maintains YAP1 nuclear localization, activates YAP1 target genes, and directs osteogenic differentiation. Knockdown of tropomyosin-1 reversed YAP1 nuclear localization consistent with relaxation of cellular contractility, suppressed osteogenesis, activated early endochondral ossification genes after 3 d of culture in induction medium, and facilitated adipogenic differentiation after 1 wk. Our results delineate cell-to-cell variation of matrix-directed MSC differentiation and highlight tropomyosin-mediated matrix sensing.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Heterogeneidade Genética , Adipogenia/genética , Adipogenia/fisiologia , Ciclo Celular , Núcleo Celular/metabolismo , Citoesqueleto , Elasticidade , Células HEK293 , Homeostase , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Análise de Célula Única , Tropomiosina/genética , Tropomiosina/metabolismo
6.
Biophys J ; 121(16): 3126-3135, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35810331

RESUMO

Transcription factor (TF) binding to genomic DNA elements constitutes one of the key mechanisms that regulates gene expression program in cells. Both consensus and nonconsensus DNA sequence elements influence the recognition specificity of TFs. Based on the analysis of experimentally determined c-Myc binding preferences to genomic DNA, here we statistically predict that certain repetitive, nonconsensus DNA symmetry elements can relatively reduce TF-DNA binding preferences. This is in contrast to a different set of repetitive, nonconsensus symmetry elements that can increase the strength of TF-DNA binding. Using c-Myc enhancer reporter system containing consensus motif flanked by nonconsensus sequences in embryonic stem cells, we directly demonstrate that the enrichment in such negatively regulating repetitive symmetry elements is sufficient to reduce the gene expression level compared with native genomic sequences. Negatively regulating repetitive symmetry elements around consensus c-Myc motif and DNA sequences containing consensus c-Myc motif flanked by entirely randomized sequences show similar expression baseline. A possible explanation for this observation is that rather than complete repression, negatively regulating repetitive symmetry elements play a regulatory role in fine-tuning the reduction of gene expression, most probably by binding TFs other than c-Myc.


Assuntos
DNA , Fatores de Transcrição , Sítios de Ligação , DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Biophys J ; 118(8): 2015-2026, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32101712

RESUMO

Transcription factor (TF) recognition is dictated by the underlying DNA motif sequence specific for each TF. Here, we reveal that DNA sequence repeat symmetry plays a central role in defining TF-DNA-binding preferences. In particular, we find that different TFs bind similar symmetry patterns in the context of different developmental layers. Most TFs possess dominant preferences for similar DNA repeat symmetry types. However, in some cases, preferences of specific TFs are changed during differentiation, suggesting the importance of information encoded outside of known motif regions. Histone modifications also exhibit strong preferences for similar DNA repeat symmetry patterns unique to each type of modification. Next, using an in vivo reporter assay, we show that gene expression in embryonic stem cells can be positively modulated by the presence of genomic and computationally designed DNA oligonucleotides containing identified nonconsensus-repetitive sequence elements. This supports the hypothesis that certain nonconsensus-repetitive patterns possess a functional ability to regulate gene expression. We also performed a solution NMR experiment to probe the stability of double-stranded DNA via imino proton resonances for several double-stranded DNA sequences characterized by different repetitive patterns. We suggest that such local stability might play a key role in determining TF-DNA binding preferences. Overall, our findings show that despite the enormous sequence complexity of the TF-DNA binding landscape in differentiating embryonic stem cells, this landscape can be quantitatively characterized in simple terms using the notion of DNA sequence repeat symmetry.


Assuntos
Células-Tronco Embrionárias , Fatores de Transcrição , Sequência de Bases , Sítios de Ligação , Células-Tronco Embrionárias/metabolismo , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Mol Cell ; 47(5): 810-22, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22940246

RESUMO

Understanding the principles governing mammalian gene regulation has been hampered by the difficulty in measuring in vivo binding dynamics of large numbers of transcription factors (TF) to DNA. Here, we develop a high-throughput Chromatin ImmunoPrecipitation (HT-ChIP) method to systematically map protein-DNA interactions. HT-ChIP was applied to define the dynamics of DNA binding by 25 TFs and 4 chromatin marks at 4 time-points following pathogen stimulus of dendritic cells. Analyzing over 180,000 TF-DNA interactions we find that TFs vary substantially in their temporal binding landscapes. This data suggests a model for transcription regulation whereby TF networks are hierarchically organized into cell differentiation factors, factors that bind targets prior to stimulus to prime them for induction, and factors that regulate specific gene programs. Overlaying HT-ChIP data on gene-expression dynamics shows that many TF-DNA interactions are established prior to the stimuli, predominantly at immediate-early genes, and identified specific TF ensembles that coordinately regulate gene-induction.


Assuntos
Imunoprecipitação da Cromatina/métodos , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Animais , DNA/genética , DNA/metabolismo , Camundongos , Fatores de Transcrição/metabolismo
9.
Nat Aging ; 4(6): 791-813, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750187

RESUMO

Classical evolutionary theories propose tradeoffs among reproduction, damage repair and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. In this study, we used the turquoise killifish (Nothobranchius furzeri) to genetically arrest germline development at discrete stages and examine how different modes of infertility impact life history. We first constructed a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. We show here that germline depletion-but not arresting germline differentiation-enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted Caenorhabditis elegans. Our results, therefore, demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.


Assuntos
Células Germinativas , Longevidade , Animais , Longevidade/genética , Masculino , Feminino , Células Germinativas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Caracteres Sexuais
10.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38187630

RESUMO

Classical evolutionary theories propose tradeoffs between reproduction, damage repair, and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. Here, we use the turquoise killifish ( N. furzeri ) to genetically arrest germline development at discrete stages, and examine how different modes of infertility impact life-history. We first construct a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. Next, we show that germline depletion - but not arresting germline differentiation - enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted C. elegans . Our results therefore demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.

11.
Nucleic Acids Res ; 38(10): 3318-27, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20110253

RESUMO

Regulation of splicing in eukaryotes occurs through the coordinated action of multiple splicing factors. Exons and introns contain numerous putative binding sites for splicing regulatory proteins. Regulation of splicing is presumably achieved by the combinatorial output of the binding of splicing factors to the corresponding binding sites. Although putative regulatory sites often overlap, no extensive study has examined whether overlapping regulatory sequences provide yet another dimension to splicing regulation. Here we analyzed experimentally-identified splicing regulatory sequences using a computational method based on the natural distribution of nucleotides and splicing regulatory sequences. We uncovered positive and negative interplay between overlapping regulatory sequences. Examination of these overlapping motifs revealed a unique spatial distribution, especially near splice donor sites of exons with weak splice donor sites. The positively selected overlapping splicing regulatory motifs were highly conserved among different species, implying functionality. Overall, these results suggest that overlap of two splicing regulatory binding sites is an evolutionary conserved widespread mechanism of splicing regulation. Finally, over-abundant motif overlaps were experimentally tested in a reporting minigene revealing that overlaps may facilitate a mode of splicing that did not occur in the presence of only one of the two regulatory sequences that comprise it.


Assuntos
Splicing de RNA , Sequências Reguladoras de Ácido Ribonucleico , Animais , Sequência de Bases , Sítios de Ligação , Biologia Computacional/métodos , Sequência Conservada , Éxons , Humanos , Sítios de Splice de RNA , Proteínas de Ligação a RNA/metabolismo
12.
PLoS Genet ; 5(11): e1000717, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19911040

RESUMO

More than 5% of alternatively spliced internal exons in the human genome are derived from Alu elements in a process termed exonization. Alus are comprised of two homologous arms separated by an internal polypyrimidine tract (PPT). In most exonizations, splice sites are selected from within the same arm. We hypothesized that the internal PPT may prevent selection of a splice site further downstream. Here, we demonstrate that this PPT enhanced the selection of an upstream 5' splice site (5'ss), even in the presence of a stronger 5'ss downstream. Deletion of this PPT shifted selection to the stronger downstream 5'ss. This enhancing effect depended on the strength of the downstream 5'ss, on the efficiency of base-pairing to U1 snRNA, and on the length of the PPT. This effect of the PPT was mediated by the binding of TIA proteins and was dependent on the distance between the PPT and the upstream 5'ss. A wide-scale evolutionary analysis of introns across 22 eukaryotes revealed an enrichment in PPTs within approximately 20 nt downstream of the 5'ss. For most metazoans, the strength of the 5'ss inversely correlated with the presence of a downstream PPT, indicative of the functional role of the PPT. Finally, we found that the proteins that mediate this effect, TIA and U1C, and in particular their functional domains, are highly conserved across evolution. Overall, these findings expand our understanding of the role of TIA1/TIAR proteins in enhancing recognition of exons, in general, and Alu exons, in particular.


Assuntos
Elementos Alu/genética , Biologia Computacional/métodos , Evolução Molecular , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a RNA/genética , Animais , Genoma Humano , Humanos , Dados de Sequência Molecular , Filogenia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ligação Proteica/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Alinhamento de Sequência , Antígeno-1 Intracelular de Células T
13.
Stem Cell Reports ; 17(6): 1334-1350, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35594859

RESUMO

Cell cycle and differentiation decisions are linked; however, the underlying principles that drive these decisions are unclear. Here, we combined cell-cycle reporter system and single-cell RNA sequencing (scRNA-seq) profiling to study the transcriptomes of embryonic stem cells (ESCs) in the context of cell-cycle states and differentiation. By applying retinoic acid, to G1 and G2/M ESCs, we show that, while both populations can differentiate toward epiblast stem cells (EpiSCs), only G2/M ESCs could differentiate into extraembryonic endoderm cells. We identified Esrrb, a pluripotency factor that is upregulated during G2/M, as a driver of extraembryonic endoderm stem cell (XEN) differentiation. Furthermore, enhancer chromatin states based on wild-type (WT) and ESRRB knockout (KO) ESCs show association of ESRRB with XEN poised enhancers. G1 cells overexpressing Esrrb allow ESCs to produce XENs, while ESRRB-KO ESCs lost their potential to differentiate into XEN. Overall, this study reveals a vital link between Esrrb and cell-cycle states during the exit from pluripotency.


Assuntos
Células-Tronco Embrionárias , Endoderma , Ciclo Celular/genética , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Camadas Germinativas
14.
PLoS Genet ; 4(9): e1000204, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18818740

RESUMO

Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA) formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.


Assuntos
Processamento Alternativo , Elementos Alu , Íntrons , Animais , Sequência de Bases , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Éxons , Genoma Humano , Humanos , Camundongos/genética , Dados de Sequência Molecular , Edição de RNA , RNA de Cadeia Dupla/genética
15.
Nat Commun ; 12(1): 4802, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376665

RESUMO

During meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes. In early meiocytes of mutant males and hermaphrodites, X segments are enriched with euchromatin assembly markers and active RNA polymerase II staining, indicating active transcription. Analysis of RNA-seq data showed that genes from the X chromosome are upregulated in gonads of mutant worms. Contrary to previous models, which predicted that any unsynapsed chromatin is silenced during meiosis, our data indicate that unsynapsed X segments are transcribed. Therefore, our results suggest that sex chromosome chromatin has a unique character that facilitates its meiotic expression when its continuity is lost, regardless of whether or not it is synapsed.


Assuntos
Caenorhabditis elegans/genética , Inativação Gênica , Meiose/genética , Cromossomo X/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Pareamento Cromossômico/genética , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Histonas/metabolismo , Hibridização in Situ Fluorescente , Masculino , Microscopia de Fluorescência , Transcrição Gênica
16.
STAR Protoc ; 2(4): 100794, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34632413

RESUMO

This CloneSeq protocol combines clonal expansion inside 3D hydrogel spheres and droplet-based RNA sequencing to resolve the limited sensitivity of single-cell approaches. CloneSeq can reveal rare subpopulations and support cellular stemness. CloneSeq can be adapted to different biological systems to discover rare subpopulations by leveraging clonal enhanced sensitivity. Important considerations include the hydrogel composition, adaptation of 3D cultured clones to the inDrops system, and inherent adhesive properties of the cells. CloneSeq is only validated for cell lines so far. For complete details on the use and execution of this protocol, please refer to (Bavli et al., 2021).


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas Analíticas Microfluídicas/instrumentação , RNA-Seq/métodos , Análise de Célula Única/métodos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células-Tronco Embrionárias/citologia , Desenho de Equipamento , Humanos , Hidrogéis , Camundongos
17.
J Dermatol Sci ; 103(2): 93-100, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281744

RESUMO

BACKGROUND: Numerous alterations in gene expression have been described in psoriatic lesions compared to uninvolved or healthy skin. However, the mechanisms which induce this altered expression remain unclear. Epigenetic modifications play a key role in regulating genes' expression. Only three studies compared the whole-genome DNA methylation of psoriasis versus healthy skin. The present is the first study of genome-wide comparison of histone modifications between psoriatic to healthy skins. OBJECTIVE: Our objective was to explore the pattern of H3K27Ac modifications in psoriatic lesions compared to uninvolved psoriatic and healthy skin, in order to identify new genes involved in the pathogenesis of psoriasis. METHOD: Using ChIP-seq with anti H3K27Ac we compared the acetylation of lysine 27 on histone 3 (H3K27Ac) modification between psoriatic to healthy skins, combined with mRNA array. RESULTS: We found a differential H3K27Ac pattern between psoriatic compared to uninvolved or healthy skins. We found that many of the overexpressed and H3K27Ac enriched genes in psoriasis, harbor a putative GRHL transcription factor-binding site. CONCLUSIONS: In the most overexpressed genes in psoriasis, there is an enrichment of H3K27Ac. However, the loss of H3K27 acetylation modification does not correlate with decreased gene expression. GRHL appears to play an important role in the pathogenesis of psoriasis and therefore, might be a new target for psoriasis therapeutics.


Assuntos
Código das Histonas , Psoríase/etiologia , Estudos de Casos e Controles , Expressão Gênica , Humanos , Psoríase/metabolismo , Fatores de Transcrição/metabolismo
18.
Dev Cell ; 56(12): 1804-1817.e7, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34010629

RESUMO

Single-cell assays have revealed the importance of heterogeneity in many biological systems. However, limited sensitivity is a major hurdle for uncovering cellular variation. To overcome it, we developed CloneSeq, combining clonal expansion inside 3D hydrogel spheres and droplet-based RNA sequencing (RNA-seq). We show that clonal cells maintain similar transcriptional profiles and cell states. CloneSeq of lung cancer cells revealed cancer-specific subpopulations, including cancer stem-like cells, that were not revealed by scRNA-seq. Clonal expansion within 3D soft microenvironments supported cellular stemness of embryonic stem cells (ESCs) even without pluripotent media, and it improved epigenetic reprogramming efficiency of mouse embryonic fibroblasts. CloneSeq of ESCs revealed that the differentiation decision is made early during Oct4 downregulation and is maintained during early clonal expansion. Together, we show CloneSeq can be adapted to different biological systems to discover rare subpopulations by leveraging the enhanced sensitivity within clones.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem da Célula/genética , Reprogramação Celular/genética , Análise de Célula Única/métodos , Células-Tronco Embrionárias/citologia , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Hidrogéis/química , Células-Tronco Neoplásicas/citologia , Fator 3 de Transcrição de Octâmero , RNA-Seq/métodos , Transcrição Gênica/genética
19.
Trends Genet ; 23(1): 5-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17070958

RESUMO

Two recent publications illuminate the evolution of alternative splicing, showing that a SR (serine-arginine-rich) protein that regulates alternative splicing in multicellular organisms is also found in a unicellular organism without alternative splicing, in which it can assist in the splicing of weak introns. Moreover, insertion of SR proteins into an organism lacking such proteins can restore the splicing of weak introns. These results imply that SR proteins had already facilitated the splicing of weak introns before the evolution of alternative splicing.


Assuntos
Processamento Alternativo/genética , Evolução Molecular , Íntrons/genética , Modelos Genéticos , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Fatores de Processamento de Serina-Arginina
20.
Front Microbiol ; 11: 1844, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849441

RESUMO

ATP-independent chaperones are widespread across all domains of life and serve as the first line of defense during protein unfolding stresses. One of the known crucial chaperones for bacterial survival in a hostile environment (e.g., heat and oxidative stress) is the highly conserved, redox-regulated ATP-independent bacterial chaperone Hsp33. Using a bioinformatic analysis, we describe novel eukaryotic homologs of Hsp33 identified in eukaryotic pathogens belonging to the kinetoplastids, a family responsible for lethal human diseases such as Chagas disease as caused by Trypanosoma cruzi, African sleeping sickness caused by Trypanosoma brucei spp., and leishmaniasis pathologies delivered by various Leishmania species. During their pathogenic life cycle, kinetoplastids need to cope with elevated temperatures and oxidative stress, the same conditions which convert Hsp33 into a powerful chaperone in bacteria, thus preventing aggregation of a wide range of misfolded proteins. Here, we focused on a functional characterization of the Hsp33 homolog in one of the members of the kinetoplastid family, T. brucei, (Tb927.6.2630), which we have named TrypOx. RNAi silencing of TrypOx led to a significant decrease in the survival of T. brucei under mild oxidative stress conditions, implying a protective role of TrypOx during the Trypanosomes growth. We then adopted a proteomics-driven approach to investigate the role of TrypOx in defining the oxidative stress response. Depletion of TrypOx significantly altered the abundance of proteins mediating redox homeostasis, linking TrypOx with the antioxidant system. Using biochemical approaches, we identified the redox-switch domain of TrypOx, showing its modularity and oxidation-dependent structural plasticity. Kinetoplastid parasites such as T. brucei need to cope with high levels of oxidants produced by the innate immune system, such that parasite-specific antioxidant proteins like TrypOx - which are depleted in mammals - are highly promising candidates for drug targeting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA