Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(20): 5179-5188.e8, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34499854

RESUMO

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Pandemias , Recombinação Genética , SARS-CoV-2/genética , Sequência de Bases/genética , COVID-19/virologia , Biologia Computacional/métodos , Frequência do Gene , Genoma Viral , Genótipo , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma/métodos
2.
Cell ; 184(19): 4848-4856, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34480864

RESUMO

Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a "laboratory escape" scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2.


Assuntos
SARS-CoV-2/fisiologia , Animais , Evolução Biológica , COVID-19/virologia , Humanos , Laboratórios , SARS-CoV-2/genética , Zoonoses/virologia
3.
Cell ; 184(1): 64-75.e11, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33275900

RESUMO

Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Assuntos
Substituição de Aminoácidos , COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Ácido Aspártico/análise , Ácido Aspártico/genética , COVID-19/epidemiologia , Genoma Viral , Glicina/análise , Glicina/genética , Humanos , Mutação , SARS-CoV-2/crescimento & desenvolvimento , Reino Unido/epidemiologia , Virulência , Sequenciamento Completo do Genoma
4.
Cell ; 184(5): 1171-1187.e20, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33621484

RESUMO

SARS-CoV-2 can mutate and evade immunity, with consequences for efficacy of emerging vaccines and antibody therapeutics. Here, we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is a highly variable region of S and provide epidemiological, clinical, and molecular characterization of a prevalent, sentinel RBM mutation, N439K. We demonstrate N439K S protein has enhanced binding affinity to the hACE2 receptor, and N439K viruses have similar in vitro replication fitness and cause infections with similar clinical outcomes as compared to wild type. We show the N439K mutation confers resistance against several neutralizing monoclonal antibodies, including one authorized for emergency use by the US Food and Drug Administration (FDA), and reduces the activity of some polyclonal sera from persons recovered from infection. Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance to guide development and usage of vaccines and therapeutics.


Assuntos
COVID-19/imunologia , Aptidão Genética , Evasão da Resposta Imune , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Humanos , Mutação , Filogenia , SARS-CoV-2/química , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Virulência
5.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32359424

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Teorema de Bayes , COVID-19 , China/epidemiologia , Infecções por Coronavirus/virologia , Monitoramento Epidemiológico , Humanos , Funções Verossimilhança , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Viagem
6.
Cell ; 167(4): 1088-1098.e6, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814506

RESUMO

The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.


Assuntos
Ebolavirus/genética , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , África Ocidental/epidemiologia , Substituição de Aminoácidos , Animais , Callithrix , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cheirogaleidae , Citoplasma/virologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/epidemiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick , Conformação Proteica em alfa-Hélice , Proteínas do Envelope Viral/metabolismo , Vírion/química , Vírion/patogenicidade , Virulência
7.
Nature ; 610(7930): 154-160, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952712

RESUMO

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Cidades/epidemiologia , Busca de Comunicante , Inglaterra/epidemiologia , Genoma Viral/genética , Humanos , Quarentena/legislação & jurisprudência , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/isolamento & purificação , Viagem/legislação & jurisprudência
8.
Nature ; 593(7858): 266-269, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767447

RESUMO

The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Número Básico de Reprodução , COVID-19/diagnóstico , COVID-19/epidemiologia , Criança , Pré-Escolar , Inglaterra/epidemiologia , Evolução Molecular , Genoma Viral/genética , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/genética , Fatores de Tempo , Adulto Jovem
9.
Nature ; 597(7877): 539-543, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526718

RESUMO

Seven years after the declaration of the first epidemic of Ebola virus disease in Guinea, the country faced a new outbreak-between 14 February and 19 June 2021-near the epicentre of the previous epidemic1,2. Here we use next-generation sequencing to generate complete or near-complete genomes of Zaire ebolavirus from samples obtained from 12 different patients. These genomes form a well-supported phylogenetic cluster with genomes from the previous outbreak, which indicates that the new outbreak was not the result of a new spillover event from an animal reservoir. The 2021 lineage shows considerably lower divergence than would be expected during sustained human-to-human transmission, which suggests a persistent infection with reduced replication or a period of latency. The resurgence of Zaire ebolavirus from humans five years after the end of the previous outbreak of Ebola virus disease reinforces the need for long-term medical and social care for patients who survive the disease, to reduce the risk of re-emergence and to prevent further stigmatization.


Assuntos
Surtos de Doenças , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Modelos Biológicos , Animais , República Democrática do Congo/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/classificação , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Infecção Persistente/virologia , Filogenia , Sobreviventes , Fatores de Tempo , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
10.
Syst Biol ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366939

RESUMO

Molecular sequence data from rapidly evolving organisms are often sampled at different points in time. Sampling times can then be used for molecular clock calibration. The root-to-tip (RTT) regression is an essential tool to assess the degree to which the data behave in a clock-like fashion. Here, we introduce Clockor2, a client-side web application for conducting RTT regression. Clockor2 allows users to quickly fit local and global molecular clocks, thus handling the increasing complexity of genomic datasets that sample beyond the assumption of homogeneous host populations. Clockor2 is efficient, handling trees of up to the order of 104 tips, with significant speed increases compared to other RTT regression applications. Although clockor2 is written as a web application, all data processing happens on the client-side, meaning that data never leaves the user's computer. Clockor2 is freely available at https : //clockor2.github.io/.

11.
PLoS Biol ; 20(8): e3001769, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998195

RESUMO

We propose a novel, non-discriminatory classification of monkeypox virus diversity. Together with the World Health Organization, we named three clades (I, IIa and IIb) in order of detection. Within IIb, the cause of the current global outbreak, we identified multiple lineages (A.1, A.2, A.1.1 and B.1) to support real-time genomic surveillance.


Assuntos
Monkeypox virus , Mpox , Surtos de Doenças , Genômica , Humanos , Mpox/diagnóstico , Mpox/epidemiologia , Monkeypox virus/genética
12.
N Engl J Med ; 384(13): 1240-1247, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33789012

RESUMO

During the 2018-2020 Ebola virus disease (EVD) outbreak in North Kivu province in the Democratic Republic of Congo, EVD was diagnosed in a patient who had received the recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) (Merck). His treatment included an Ebola virus (EBOV)-specific monoclonal antibody (mAb114), and he recovered within 14 days. However, 6 months later, he presented again with severe EVD-like illness and EBOV viremia, and he died. We initiated epidemiologic and genomic investigations that showed that the patient had had a relapse of acute EVD that led to a transmission chain resulting in 91 cases across six health zones over 4 months. (Funded by the Bill and Melinda Gates Foundation and others.).


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/transmissão , Adulto , Teorema de Bayes , República Democrática do Congo/epidemiologia , Vacinas contra Ebola/imunologia , Ebolavirus/isolamento & purificação , Evolução Fatal , Genoma Viral , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/terapia , Humanos , Masculino , Mutação , Filogenia , RNA Viral/sangue , Recidiva
13.
Bioinformatics ; 39(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37713452

RESUMO

SUMMARY: Scorpio provides a set of command line utilities for classifying, haplotyping, and defining constellations of mutations for an aligned set of genome sequences. It was developed to enable exploration and classification of variants of concern within the SARS-CoV-2 pandemic, but can be applied more generally to other species. AVAILABILITY AND IMPLEMENTATION: Scorpio is an open-source project distributed under the GNU GPL version 3 license. Source code and binaries are available at https://github.com/cov-lineages/scorpio, and binaries are also available from Bioconda. SARS-CoV-2 specific definitions can be installed as a separate dependency from https://github.com/cov-lineages/constellations.


Assuntos
Medicamentos de Ervas Chinesas , Genoma Viral , Software , SARS-CoV-2/genética , Mutação
14.
PLoS Pathog ; 18(5): e1010023, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500026

RESUMO

The availability of pathogen sequence data and use of genomic surveillance is rapidly increasing. Genomic tools and classification systems need updating to reflect this. Here, rabies virus is used as an example to showcase the potential value of updated genomic tools to enhance surveillance to better understand epidemiological dynamics and improve disease control. Previous studies have described the evolutionary history of rabies virus, however the resulting taxonomy lacks the definition necessary to identify incursions, lineage turnover and transmission routes at high resolution. Here we propose a lineage classification system based on the dynamic nomenclature used for SARS-CoV-2, defining a lineage by phylogenetic methods for tracking virus spread and comparing sequences across geographic areas. We demonstrate this system through application to the globally distributed Cosmopolitan clade of rabies virus, defining 96 total lineages within the clade, beyond the 22 previously reported. We further show how integration of this tool with a new rabies virus sequence data resource (RABV-GLUE) enables rapid application, for example, highlighting lineage dynamics relevant to control and elimination programmes, such as identifying importations and their sources, as well as areas of persistence and routes of virus movement, including transboundary incursions. This system and the tools developed should be useful for coordinating and targeting control programmes and monitoring progress as countries work towards eliminating dog-mediated rabies, as well as having potential for broader application to the surveillance of other viruses.


Assuntos
Filogenia , Vírus da Raiva , Raiva , Animais , Cães , Genômica , Raiva/virologia , Vírus da Raiva/genética
15.
Nature ; 546(7658): 411-415, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28538734

RESUMO

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Assuntos
Filogenia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/genética , Zika virus/isolamento & purificação , Animais , Brasil/epidemiologia , Colômbia/epidemiologia , Culicidae/virologia , Surtos de Doenças/estatística & dados numéricos , Genoma Viral/genética , Mapeamento Geográfico , Honduras/epidemiologia , Humanos , Metagenoma/genética , Epidemiologia Molecular , Mosquitos Vetores/virologia , Mutação , Vigilância em Saúde Pública , Porto Rico/epidemiologia , Estados Unidos/epidemiologia , Zika virus/classificação , Zika virus/patogenicidade , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/epidemiologia
16.
BMC Genomics ; 23(1): 121, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148677

RESUMO

BACKGROUND: More than 2 million SARS-CoV-2 genome sequences have been generated and shared since the start of the COVID-19 pandemic and constitute a vital information source that informs outbreak control, disease surveillance, and public health policy. The Pango dynamic nomenclature is a popular system for classifying and naming genetically-distinct lineages of SARS-CoV-2, including variants of concern, and is based on the analysis of complete or near-complete virus genomes. However, for several reasons, nucleotide sequences may be generated that cover only the spike gene of SARS-CoV-2. It is therefore important to understand how much information about Pango lineage status is contained in spike-only nucleotide sequences. Here we explore how Pango lineages might be reliably designated and assigned to spike-only nucleotide sequences. We survey the genetic diversity of such sequences, and investigate the information they contain about Pango lineage status. RESULTS: Although many lineages, including the main variants of concern, can be identified clearly using spike-only sequences, some spike-only sequences are shared among tens or hundreds of Pango lineages. To facilitate the classification of SARS-CoV-2 lineages using subgenomic sequences we introduce the notion of designating such sequences to a "lineage set", which represents the range of Pango lineages that are consistent with the observed mutations in a given spike sequence. CONCLUSIONS: We find that many lineages, including the main variants-of-concern, can be reliably identified by spike alone and we define lineage-sets to represent the lineage precision that can be achieved using spike-only nucleotide sequences. These data provide a foundation for the development of software tools that can assign newly-generated spike nucleotide sequences to Pango lineage sets.


Assuntos
COVID-19 , SARS-CoV-2 , Sequência de Bases , Humanos , Mutação , Pandemias , Filogenia , Glicoproteína da Espícula de Coronavírus/genética
17.
Mol Biol Evol ; 38(8): 3486-3493, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33528560

RESUMO

Spatially explicit phylogeographic analyses can be performed with an inference framework that employs relaxed random walks to reconstruct phylogenetic dispersal histories in continuous space. This core model was first implemented 10 years ago and has opened up new opportunities in the field of phylodynamics, allowing researchers to map and analyze the spatial dissemination of rapidly evolving pathogens. We here provide a detailed and step-by-step guide on how to set up, run, and interpret continuous phylogeographic analyses using the programs BEAUti, BEAST, Tracer, and TreeAnnotator.


Assuntos
Filogeografia/métodos , Software , Teorema de Bayes , Evolução Biológica
18.
Nature ; 538(7624): 193-200, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734858

RESUMO

The 2013-2016 epidemic of Ebola virus disease in West Africa was of unprecedented magnitude and changed our perspective on this lethal but sporadically emerging virus. This outbreak also marked the beginning of large-scale real-time molecular epidemiology. Here, we show how evolutionary analyses of Ebola virus genome sequences provided key insights into virus origins, evolution and spread during the epidemic. We provide basic scientists, epidemiologists, medical practitioners and other outbreak responders with an enhanced understanding of the utility and limitations of pathogen genomic sequencing. This will be crucially important in our attempts to track and control future infectious disease outbreaks.


Assuntos
Ebolavirus/genética , Evolução Molecular , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Animais , Ebolavirus/classificação , Genoma Viral/genética , Humanos , Epidemiologia Molecular , Fenótipo , Saúde Pública
19.
Nature ; 530(7588): 51-56, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26814962

RESUMO

Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy.


Assuntos
Portador Sadio/tratamento farmacológico , Portador Sadio/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Carga Viral , Replicação Viral , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Portador Sadio/sangue , Farmacorresistência Viral/efeitos dos fármacos , Infecções por HIV/sangue , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/isolamento & purificação , Haplótipos/efeitos dos fármacos , Humanos , Linfonodos/efeitos dos fármacos , Linfonodos/virologia , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Seleção Genética/efeitos dos fármacos , Análise de Sequência de DNA , Análise Espaço-Temporal , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
20.
Mol Biol Evol ; 37(6): 1832-1842, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32101295

RESUMO

Reconstructing pathogen dynamics from genetic data as they become available during an outbreak or epidemic represents an important statistical scenario in which observations arrive sequentially in time and one is interested in performing inference in an "online" fashion. Widely used Bayesian phylogenetic inference packages are not set up for this purpose, generally requiring one to recompute trees and evolutionary model parameters de novo when new data arrive. To accommodate increasing data flow in a Bayesian phylogenetic framework, we introduce a methodology to efficiently update the posterior distribution with newly available genetic data. Our procedure is implemented in the BEAST 1.10 software package, and relies on a distance-based measure to insert new taxa into the current estimate of the phylogeny and imputes plausible values for new model parameters to accommodate growing dimensionality. This augmentation creates informed starting values and re-uses optimally tuned transition kernels for posterior exploration of growing data sets, reducing the time necessary to converge to target posterior distributions. We apply our framework to data from the recent West African Ebola virus epidemic and demonstrate a considerable reduction in time required to obtain posterior estimates at different time points of the outbreak. Beyond epidemic monitoring, this framework easily finds other applications within the phylogenetics community, where changes in the data-in terms of alignment changes, sequence addition or removal-present common scenarios that can benefit from online inference.


Assuntos
Técnicas Genéticas , Filogenia , Software , África Ocidental/epidemiologia , Teorema de Bayes , Doença pelo Vírus Ebola/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA