RESUMO
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have demonstrated strong immunogenicity and protection against severe disease, concerns about the duration and breadth of these responses remain. In this study, we show that codelivery of plasmid-encoded adenosine deaminase-1 (pADA) with SARS-CoV-2 spike glycoprotein DNA enhances immune memory and durability in vivo. Coimmunized mice displayed increased spike-specific IgG of higher affinity and neutralizing capacity as compared with plasmid-encoded spike-only-immunized animals. Importantly, pADA significantly improved the longevity of these enhanced responses in vivo. This coincided with durable increases in frequencies of plasmablasts, receptor-binding domain-specific memory B cells, and SARS-CoV-2-specific T follicular helper cells. Increased spike-specific T cell polyfunctionality was also observed. Notably, animals coimmunized with pADA had significantly reduced viral loads compared with their nonadjuvanted counterparts in a SARS-CoV-2 infection model. These data suggest that pADA enhances immune memory and durability and supports further translational studies.
Assuntos
COVID-19 , Vacinas Virais , Adenosina Desaminase/genética , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2RESUMO
PURPOSE: The relationship of Helicobacter pylori infection with ocular diseases, including anterior uveitis, has been reported. The objective of this study was to determine the presence of anti-H. pylori IgG antibodies in patients with idiopathic non-granulomatous anterior uveitis and compare the results with a control group. METHODS: A prospective, comparative, and cross-sectional study was conducted. Patients with idiopathic granulomatous anterior uveitis and a group of control subjects were included. The presence of anti-H. pylori IgG antibodies was determined. The chi-square test was performed for comparative analysis with GraphPad Prism V5.0 software. RESULTS: Thirty patients with idiopathic non-granulomatous anterior uveitis and 35 control subjects were included. In the determination of anti-H. pylori IgG antibodies, 24 (80%) patients and 19 (54%) control subjects were positive. A significant difference (p = 0.0263) was found between the groups and an odds ratio (OR) of 3.37. CONCLUSIONS: A direct relationship was found between the presence of anti-H. pylori IgG antibodies and idiopathic non-granulomatous anterior uveitis. An association can be established between idiopathic non-granulomatous anterior uveitis and H. pylori infection, without this being a causal or physiopathogenic relationship.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Uveíte Anterior , Humanos , Estudos Prospectivos , Estudos Transversais , Anticorpos Antibacterianos , Doença Aguda , Imunoglobulina GRESUMO
BACKGROUND: Additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are safe and effective as primary vaccines and boosters remain urgently needed to combat the coronavirus disease 2019 (COVID-19) pandemic. We describe safety and durability of immune responses following 2 primary doses and a homologous booster dose of an investigational DNA vaccine (INO-4800) targeting full-length spike antigen. METHODS: Three dosage strengths of INO-4800 (0.5 mg, 1.0 mg, and 2.0 mg) were evaluated in 120 age-stratified healthy adults. Intradermal injection of INO-4800 followed by electroporation at 0 and 4 weeks preceded an optional booster 6-10.5 months after the second dose. RESULTS: INO-4800 appeared well tolerated with no treatment-related serious adverse events. Most adverse events were mild and did not increase in frequency with age and subsequent dosing. A durable antibody response was observed 6 months following the second dose; a homologous booster dose significantly increased immune responses. Cytokine-producing T cells and activated CD8+ T cells with lytic potential were significantly increased in the 2.0-mg dose group. CONCLUSIONS: INO-4800 was well tolerated in a 2-dose primary series and homologous booster in all adults, including elderly participants. These results support further development of INO-4800 for use as primary vaccine and booster. CLINICAL TRIALS REGISTRATION: NCT04336410.
Assuntos
COVID-19 , Vacinas de DNA , Adulto , Idoso , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunogenicidade da Vacina , SARS-CoV-2 , Vacinação/efeitos adversos , Vacinas de DNA/efeitos adversosRESUMO
mAbs are a possible adjunct to vaccination and drugs in treatment of influenza virus infection. However, questions remain whether small animal models accurately predict efficacy in humans. We have established the pig, a large natural host animal for influenza, with many physiological similarities to humans, as a robust model for testing mAbs. We show that a strongly neutralizing mAb (2-12C) against the hemagglutinin head administered prophylactically at 15 mg/kg reduced viral load and lung pathology after pandemic H1N1 influenza challenge. A lower dose of 1 mg/kg of 2-12C or a DNA plasmid-encoded version of 2-12C reduced pathology and viral load in the lungs but not viral shedding in nasal swabs. We propose that the pig influenza model will be useful for testing candidate mAbs and emerging delivery platforms prior to human trials.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/tratamento farmacológico , SuínosRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of COVID-19, resulting in cases of mild to severe respiratory distress and significant mortality. The global outbreak of this novel coronavirus has now infected >20 million people worldwide, with >5 million cases in the United States (11 August 2020). The development of diagnostic and research tools to determine infection and vaccine efficacy is critically needed. We have developed multiple serologic assays using newly designed SARS-CoV-2 reagents for detecting the presence of receptor-binding antibodies in sera. The first assay is surface plasmon resonance (SPR) based and can quantitate both antibody binding to the SARS-CoV-2 spike protein and blocking to the Angiotensin-converting enzyme 2 (ACE2) receptor in a single experiment. The second assay is enzyme-linked immunosorbent assay (ELISA) based and can measure competition and blocking of the ACE2 receptor to the SARS-CoV-2 spike protein with antispike antibodies. The assay is highly versatile, and we demonstrate the broad utility of the assay by measuring antibody functionality of sera from small animals and nonhuman primates immunized with an experimental SARS-CoV-2 vaccine. In addition, we employ the assay to measure receptor blocking of sera from SARS-CoV-2-infected patients. The assay is shown to correlate with pseudovirus neutralization titers. This type of rapid, surrogate neutralization diagnostic can be employed widely to help study SARS-CoV-2 infection and assess the efficacy of vaccines.
Assuntos
Anticorpos Bloqueadores/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Peptidil Dipeptidase A/imunologia , Pneumonia Viral/diagnóstico , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Ensaio de Imunoadsorção Enzimática , Cobaias , Humanos , Imunoglobulina G/sangue , Camundongos , Testes de Neutralização , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , Primatas , Coelhos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Ressonância de Plasmônio de Superfície , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologiaRESUMO
Zika virus (ZIKV) infection is endemic to several world regions, and many others are at high risk for seasonal outbreaks. Synthetic DNA-encoded monoclonal antibody (DMAb) is an approach that enables in vivo delivery of highly potent mAbs to control infections. We engineered DMAb-ZK190, encoding the mAb ZK190 neutralizing antibody, which targets the ZIKV E protein DIII domain. In vivo-delivered DMAb-ZK190 achieved expression levels persisting >10 weeks in mice and >3 weeks in non-human primate (NHPs), which is protective against ZIKV infectious challenge. This study is the first demonstration of infectious disease control in NHPs following in vivo delivery of a nucleic acid-encoded antibody, supporting the importance of this new platform.
Assuntos
Anticorpos Neutralizantes/farmacologia , DNA/farmacologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , DNA/imunologia , Humanos , Camundongos , Primatas , Proteínas do Envelope Viral/antagonistas & inibidores , Zika virus/genética , Zika virus/imunologia , Zika virus/patogenicidade , Infecção por Zika virus/imunologia , Infecção por Zika virus/terapia , Infecção por Zika virus/virologiaRESUMO
KEY POINTS: This work confirms previous reports that CM4620, a small molecule inhibitor of Ca2+ entry via store operated Ca2+ entry (SOCE) channels formed by stromal interaction molecule 1 (STIM1)/Orai complexes, attenuates acinar cell pathology and acute pancreatitis in mouse experimental models. Here we report that intravenous administration of CM4620 reduces the severity of acute pancreatitis in the rat, a hitherto untested species. Using CM4620, we probe further the mechanisms whereby SOCE via STIM1/Orai complexes contributes to the disease in pancreatic acinar cells, supporting a role for endoplasmic reticulum stress/cell death pathways in these cells. Using CM4620, we show that SOCE via STIM1/Orai complexes promotes neutrophil oxidative burst and inflammatory gene expression during acute pancreatitis, including in immune cells which may be either circulating or invading the pancreas. Using CM4620, we show that SOCE via STIM1/Orai complexes promotes activation and fibroinflammatory gene expression within pancreatic stellate cells. ABSTRACT: Key features of acute pancreatitis include excess cellular Ca2+ entry driven by Ca2+ depletion from the endoplasmic reticulum (ER) and subsequent activation of store-operated Ca2+ entry (SOCE) channels in the plasma membrane. In several cell types, including pancreatic acinar, stellate cells (PaSCs) and immune cells, SOCE is mediated via channels composed primarily of Orai1 and stromal interaction molecule 1 (STIM1). CM4620, a selective Orai1 inhibitor, prevents Ca2+ entry in acinar cells. This study investigates the effects of CM4620 in preventing or reducing acute pancreatitis features and severity. We tested the effects of CM4620 on SOCE, trypsinogen activation, acinar cell death, activation of NFAT and NF-κB, and inflammatory responses in ex vivo and in vivo rodent models of acute pancreatitis and human pancreatic acini. We also examined whether CM4620 inhibited cytokine release in immune cells, fibro-inflammatory responses in PaSCs, and oxidative burst in neutrophils, all cell types participating in pancreatitis. CM4620 administration to rats by i.v. infusion starting 30 min after induction of pancreatitis significantly diminished pancreatitis features including pancreatic oedema, acinar cell vacuolization, intrapancreatic trypsin activity, cell death signalling and acinar cell death. CM4620 also decreased myeloperoxidase activity and inflammatory cytokine expression in pancreas and lung tissues, fMLF peptide-induced oxidative burst in human neutrophils, and cytokine production in human peripheral blood mononuclear cells (PBMCs) and rodent PaSCs, indicating that Orai1/STIM1 channels participate in the inflammatory responses of these cell types during acute pancreatitis. These findings support pathological Ca2+ entry-mediated cell death and proinflammatory signalling as central mechanisms in acute pancreatitis pathobiology.
Assuntos
Amidinas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Proteína ORAI1/antagonistas & inibidores , Pancreatite/tratamento farmacológico , Prolina/análogos & derivados , Células Acinares/metabolismo , Amidinas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Ceruletídeo , Citocinas/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células Estreladas do Pâncreas/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/imunologia , Pancreatite/metabolismo , Peroxidase/metabolismo , Prolina/farmacologia , Prolina/uso terapêutico , Ratos , Superóxidos/metabolismoRESUMO
BACKGROUND & AIMS: Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release-activated calcium modulator ORAI1 is the most abundant Ca(2+) entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. METHODS: Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. RESULTS: GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca(2+) currents after Ca(2+) release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. CONCLUSIONS: Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed for the treatment of patients with pancreatitis.
Assuntos
Células Acinares/efeitos dos fármacos , Benzamidas/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Pancreatite/tratamento farmacológico , Pirazóis/farmacologia , Células Acinares/citologia , Doença Aguda , Animais , Ácidos e Sais Biliares/toxicidade , Cálcio/toxicidade , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Indóis/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Proteína ORAI1 , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Tapsigargina/toxicidade , Fatores de Tempo , Resultado do TratamentoRESUMO
BACKGROUND: Treatment times for ST-elevation myocardial infarction (STEMI) patients presenting to percutaneous coronary intervention hospitals have improved dramatically over the past 10 years, particularly for patients using emergency medical services. Limited data exist regarding treatment times and outcomes for patients who develop STEMI after hospital admission. METHODS AND RESULTS: With the use of a comprehensive prospective regional STEMI program database, we evaluated the characteristics and outcomes for patients who develop STEMI after hospital admission. Of the 3795 consecutive STEMI patients treated by the use of the Minneapolis Heart Institute regional STEMI program from March 2003 to January 2013, 990 (26.1%) presented initially to the percutaneous coronary intervention facility, including 640 arriving via emergency medical services, 267 self/family driven, and 83 already admitted to the hospital. Patients with in-hospital presentation were older with higher body mass indexes, were more likely to have hypertension, and to present with pre-percutaneous coronary intervention cardiac arrest and cardiogenic shock. Door-to-balloon times (diagnostic ECG-to-balloon for in-hospital patients) were longer than for patients using emergency medical services (76 versus 51 minutes; P<0.001), but similar to self/family-driven patients (76 versus 66 minutes; P=0.13). In-hospital patients had longer lengths of stay (5 versus 3 versus 3 days; P<0.001) and higher 1-year mortality (16.9% versus 10.3% versus 7.1%; P=0.032). These patients frequently had high-risk and complex reasons for admission, including 30.1% with acute coronary syndrome, 22.9% postsurgery, 13.3% respiratory failure, and 8.4% ventricular fibrillation. CONCLUSIONS: Patients who develop STEMI while in-hospital represent a unique, high-risk subset of patients. They have increased treatment time and lengths of stay and higher mortality rates than the patients presenting via emergency medical services or who are self/family driven.
Assuntos
Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , Admissão do Paciente/tendências , Idoso , Bases de Dados Factuais/tendências , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Resultado do TratamentoRESUMO
Anesthetic gases are potent greenhouse gases, which are currently released into the atmosphere where they remain for many years. Strategies to reduce the carbon footprint in anesthesiology without compromising patient safety are urgently needed. Since 2020 several departments of anesthesiology have installed anesthetic gas capture systems with which anesthetic gases can be collected. This article aims to describe the anesthetic gas capture system CONTRAfluran™ and to give an overview of the first experiences in four departments of anesthesiology working with the new device in the daily clinical routine. The CONTRAfluran™ system presents a new concept in the surgical setting that has the potential to reduce the carbon footprint in anesthesiology; however, in order to accurately estimate CO2 equivalent savings, more information concerning the reprocessing and data on the pharmacokinetics of anesthetic gases are needed. Application of the CONTRAfluran™ system in daily clinical routine is feasible when anesthesiologists are aware of specific issues. In order to minimize the carbon footprint, it remains essential to implement the specific recommendations in the position paper of the German Society of Anaesthesiology and Intensive Care medicine (DGAI) and the Professional Association of German Anaesthesiologists (BDA) on ecological sustainability in anesthesiology and intensive care medicine and to support further research.
Assuntos
Anestesiologia , Anestésicos Inalatórios , Gases de Efeito Estufa , Humanos , Anestesiologistas , Pegada de CarbonoRESUMO
BACKGROUND: The SARS-CoV-2 pandemic has resulted in a dramatic rise of the demand for medical devices and drugs. In this context, an important shortage of programmable syringe pumps, used to administrate different drugs in intensive care units, was seen. The opportunity of administrating combinations of five intensive care units selected drugs (Sufentanil, Clonidine, Loxapine, Midazolam, and Ketamine) was considered. METHODS: The drug mixtures were studied in a pure form or diluted in NaCl 0.9% or G5%. Twenty-six possible combinations of the five drugs were produced in glass vials or polypropylene syringes and stored at 25 °C for 14 days. The LC method was implemented to study drugs combinations in the presence of the degradation products. The clearness and pH were also monitored. RESULTS: All the 26 possible combinations displayed adequate physicochemical stability at 25 °C: at least 3 days and 7 days, respectively, for the dilution in 0.9% NaCl or glucose 5%, and the pure drug products mixtures. CONCLUSIONS: The study provided sufficient stability results, covering the medication administration period of at least three days. The combination of more than two drugs offers the advantage of minimizing the individual doses and reduces unwanted side-effects. Hence, this study opens up the possibility of combining the five drugs in one single syringe, which is useful especially under the current circumstances associated with an important shortage of programmable syringe pumps and pharmaceuticals.
RESUMO
The enhanced transmissibility and immune evasion associated with emerging SARS-CoV-2 variants demands the development of next-generation vaccines capable of inducing superior protection amid a shifting pandemic landscape. Since a portion of the global population harbors some level of immunity from vaccines based on the original Wuhan-Hu-1 SARS-CoV-2 sequence or natural infection, an important question going forward is whether this immunity can be boosted by next-generation vaccines that target emerging variants while simultaneously maintaining long-term protection against existing strains. Here, we evaluated the immunogenicity of INO-4800, our synthetic DNA vaccine candidate for COVID-19 currently in clinical evaluation, and INO-4802, a next-generation DNA vaccine designed to broadly target emerging SARS-CoV-2 variants, as booster vaccines in nonhuman primates. Rhesus macaques primed over one year prior with the first-generation INO-4800 vaccine were boosted with either INO-4800 or INO-4802 in homologous or heterologous prime-boost regimens. Both boosting schedules led to an expansion of T cells and antibody responses which were characterized by improved neutralizing and ACE2 blocking activity across wild-type SARS-CoV-2 as well as multiple variants of concern. These data illustrate the durability of immunity following vaccination with INO-4800 and additionally support the use of either INO-4800 or INO-4802 in prime-boost regimens.
Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Animais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , VacinaçãoRESUMO
OBJECTIVE: To assess antibiotic use and other factors associated with death rates in beef feedlots in 3 regions of the US over a 10-year period. SAMPLE: Data for 186,297 lots (groups) of finished cattle marketed between 2010 and 2019 were obtained from a database representing feedlots in the central, high, and north plains of the US. PROCEDURES: Descriptive statistics were generated. Generalized linear mixed models were used to estimate lot death rates for each region, sex (steer or heifer), and cattle origin (Mexico or the US) combination. Death rate was calculated as the (number of deaths/number of cattle placed in the lot) × 100. Lot antibiotic use (TotalActiveMG/KGOut) was calculated as the total milligrams of active antibiotics assigned to the lot per live weight (in kilograms) of cattle marketed from the lot. Rate ratios were calculated to evaluate the respective associations between lot death rate and characteristics of cattle and antibiotic use. RESULTS: Mean death rate increased during the 10-year period, peaking in 2018. Mean number of days on feed also increased over time. Mean TotalActiveMG/KGOut was greatest in 2014 and 2015, lowest in 2017, and moderated in 2018 and 2019. Death rate was positively associated with the number of days on feed and had a nonlinear association with TotalActiveMG/KGOut. Feeding medicated feed articles mitigated death rate. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested a balance between disease prevention and control in feedlots for cattle with various risk profiles. Additional data sources are needed to assess TotalActiveMG/KGOut across the cattle lifetime.
Assuntos
Ração Animal , Antibacterianos , Animais , Antibacterianos/uso terapêutico , Bovinos , Feminino , Estados Unidos/epidemiologiaRESUMO
The emergence of multiple concurrent infectious diseases localized in the world creates a complex burden on global public health systems. Outbreaks of Ebola, Lassa, and Marburg viruses in overlapping regions of central and West Africa and the co-circulation of Zika, Dengue, and Chikungunya viruses in areas with A. aegypti mosquitos highlight the need for a rapidly deployable, safe, and versatile vaccine platform readily available to respond. The DNA vaccine platform stands out as such an application. Here, we present proof-of-concept studies from mice, guinea pigs, and nonhuman primates for two multivalent DNA vaccines delivered using in vivo electroporation (EP) targeting mosquito-borne (MMBV) and hemorrhagic fever (MHFV) viruses. Immunization with MMBV or MHFV vaccines via intradermal EP delivery generated robust cellular and humoral immune responses against all target viral antigens in all species. MMBV vaccine generated antigen-specific binding antibodies and IFNγ-secreting lymphocytes detected in NHPs up to six months post final immunization, suggesting induction of long-term immune memory. Serum from MHFV vaccinated NHPs demonstrated neutralizing activity in Ebola, Lassa, and Marburg pseudovirus assays indicating the potential to offer protection. Together, these data strongly support and demonstrate the versatility of DNA vaccines as a multivalent vaccine development platform for emerging infectious diseases.
Assuntos
Culicidae/virologia , Ebolavirus/imunologia , Vacinas Combinadas/imunologia , Vacinas de DNA/imunologia , África Ocidental , Animais , Anticorpos Antivirais/imunologia , Arenavirus do Novo Mundo/imunologia , Vírus da Dengue/imunologia , Epidemias , Feminino , Cobaias , Doença pelo Vírus Ebola/imunologia , Imunidade Humoral/imunologia , Imunização/métodos , Febre Lassa/imunologia , Marburgvirus/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Vacinação/métodos , Vacinas Virais/imunologia , Zika virus/imunologia , Infecção por Zika virus/imunologiaRESUMO
Emerging coronaviruses from zoonotic reservoirs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been associated with human-to-human transmission and significant morbidity and mortality. Here, we study both intradermal and intramuscular 2-dose delivery regimens of an advanced synthetic DNA vaccine candidate encoding a full-length MERS-CoV spike (S) protein, which induced potent binding and neutralizing antibodies as well as cellular immune responses in rhesus macaques. In a MERS-CoV challenge, all immunized rhesus macaques exhibited reduced clinical symptoms, lowered viral lung load, and decreased severity of pathological signs of disease compared with controls. Intradermal vaccination was dose sparing and more effective in this model at protecting animals from disease. The data support the further study of this vaccine for preventing MERS-CoV infection and transmission, including investigation of such vaccines and simplified delivery routes against emerging coronaviruses.
Assuntos
Infecções por Coronavirus/veterinária , Macaca mulatta/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas de DNA/uso terapêutico , Vacinas Virais/uso terapêutico , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Imunogenicidade da Vacina , Injeções Intradérmicas , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genéticaRESUMO
Coronavirus disease 2019 (COVID-19) is caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the highly contagious nature of SARS-CoV-2, it has infected more than 137 million individuals and caused more than 2.9 million deaths globally as of April 13, 2021. There is an urgent need to develop effective novel therapeutic strategies to treat or prevent this infection. Toward this goal, we focused on the development of monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike glycoprotein (SARS-CoV-2 Spike) present on the surface of virus particles as well as virus-infected cells. We isolated anti-SARS-CoV-2 Spike mAbs from animals immunized with a DNA vaccine. We then selected a highly potent set of mAbs against SARS-CoV-2 Spike protein and evaluated each candidate for their expression, target binding affinity, and neutralization potential using complementary ACE2-blocking and pseudovirus neutralization assays. We identified a total of 10 antibodies, which specifically and strongly bound to SARS-CoV-2 Spike, blocked the receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) interaction, and neutralized SARS-CoV-2. Furthermore, the glycomic profile of the antibodies suggested that they have high Fc-mediated effector functions. These antibodies should be further investigated for elucidating the neutralizing epitopes on Spike for the design of next-generation vaccines and for their potential in diagnostic as well as therapeutic utilities against SARS-CoV-2.
RESUMO
Global surveillance has identified emerging SARS-CoV-2 variants of concern (VOC) associated with broadened host specificity, pathogenicity, and immune evasion to vaccine-induced immunity. Here we compared humoral and cellular responses against SARS-CoV-2 VOC in subjects immunized with the DNA vaccine, INO-4800. INO-4800 vaccination induced neutralizing antibodies against all variants tested, with reduced levels detected against B.1.351. IFNγ T cell responses were fully maintained against all variants tested.
RESUMO
Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induced both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 × 106 pfu) via the intranasal and intratracheal routes we observed significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 was associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provided no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.
Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de CoronavírusRESUMO
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.