Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Genes Dev ; 34(17-18): 1239-1251, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820038

RESUMO

A maize chromosome variant called abnormal chromosome 10 (Ab10) converts knobs on chromosome arms into neocentromeres, causing their preferential segregation to egg cells in a process known as meiotic drive. We previously demonstrated that the gene Kinesin driver (Kindr) on Ab10 encodes a kinesin-14 required to mobilize neocentromeres made up of the major tandem repeat knob180. Here we describe a second kinesin-14 gene, TR-1 kinesin (Trkin), that is required to mobilize neocentromeres made up of the minor tandem repeat TR-1. Trkin lies in a 4-Mb region of Ab10 that is not syntenic with any other region of the maize genome and shows extraordinary sequence divergence from Kindr and other kinesins in plants. Despite its unusual structure, Trkin encodes a functional minus end-directed kinesin that specifically colocalizes with TR-1 in meiosis, forming long drawn out neocentromeres. TRKIN contains a nuclear localization signal and localizes to knobs earlier in prophase than KINDR. The fact that TR-1 repeats often co-occur with knob180 repeats suggests that the current role of the TRKIN/TR-1 system is to facilitate the meiotic drive of the KINDR/knob180 system.


Assuntos
Centrômero/genética , Centrômero/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Cromossomos de Plantas/genética , Genes de Plantas/genética , Meiose , Modelos Genéticos , Transporte Proteico/genética
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38343327

RESUMO

Hyperactive ribosome biogenesis (RiboSis) fuels unrestricted cell proliferation, whereas genomic hallmarks and therapeutic targets of RiboSis in cancers remain elusive, and efficient approaches to quantify RiboSis activity are still limited. Here, we have established an in silico approach to conveniently score RiboSis activity based on individual transcriptome data. By employing this novel approach and RNA-seq data of 14 645 samples from TCGA/GTEx dataset and 917 294 single-cell expression profiles across 13 cancer types, we observed the elevated activity of RiboSis in malignant cells of various human cancers, and high risk of severe outcomes in patients with high RiboSis activity. Our mining of pan-cancer multi-omics data characterized numerous molecular alterations of RiboSis, and unveiled the predominant somatic alteration in RiboSis genes was copy number variation. A total of 128 RiboSis genes, including EXOSC4, BOP1, RPLP0P6 and UTP23, were identified as potential therapeutic targets. Interestingly, we observed that the activity of RiboSis was associated with TP53 mutations, and hyperactive RiboSis was associated with poor outcomes in lung cancer patients without TP53 mutations, highlighting the importance of considering TP53 mutations during therapy by impairing RiboSis. Moreover, we predicted 23 compounds, including methotrexate and CX-5461, associated with the expression signature of RiboSis genes. The current study generates a comprehensive blueprint of molecular alterations in RiboSis genes across cancers, which provides a valuable resource for RiboSis-based anti-tumor therapy.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Genômica , Mutação , Ribossomos/genética , Ribossomos/metabolismo , Proteínas de Ligação a RNA/genética
3.
Small ; : e2400541, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644221

RESUMO

The high crystalline covalent triazine framework-1 (CTF-1), composed of alternating triazine and phenylene, has emerged as an efficient photocatalyst for solar-driven hydrogen evolution reaction (HER). However, it is of great challenge to further improve photocatalytic HER performance via increasing crystallinity due to its near-perfect crystallization. Herein, an alternative strategy of scaffold functionalization is employed to optimize the energy band structure of crystalline CTF-1 for boosting hydrogen-evolving activity. Guided by the computational predictions, versatile CTF-based polymer photocatalysts are prepared with different functional groups (OH, NH2, COOH) using binary polymerization for practical hydrogen production. Experiment evidence verifies that the introduction of a limited number of electron-donating groups is sufficient to maintain high crystallinity in CTF, modulate the band structure, broaden visible light absorption, and consequently enhance its photophysical properties. Notably, the functionalization with OH exhibits the most positive effect on CTF-1, delivering a photocatalytic activity with a hydrogen-producing rate exceeding 100 µmol h-1.

4.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339151

RESUMO

Photocatalytic technology has been recently conducted to remove microbial contamination due to its unique features of nontoxic by-products, low cost, negligible microbial resistance and broad-spectrum elimination capacity. Herein, a novel two dimensional (2D) g-C3N4/Bi(OH)3 (CNB) heterojunction was fabricated byincorporating Bi(OH)3 (BOH) nanoparticles with g-C3N4 (CN) nanosheets. This CNB heterojunction exhibited high photocatalytic antibacterial efficiency (99.3%) against Escherichia coli (E. coli) under visible light irradiation, which was 4.3 and 3.4 times that of BOH (23.0%) and CN (28.0%), respectively. The increase in specific surface area, ultra-thin layered structure, construction of a heterojunction and enhancement of visible light absorption were conducive to facilitating the separation and transfer of photoinduced charge carriers. Live/dead cell staining, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assays and scanning electron microscopy (SEM) have been implemented to investigate the damage to the cell membrane and the leakage of the intracellular protein in the photocatalytic antibacterial process. The e-, h+ and O2•- were the active species involved in this process. This study proposed an appropriate photocatalyst for efficient treatment of bacterial contamination.


Assuntos
Escherichia coli , Grafite , Escherichia coli/efeitos da radiação , Catálise , Grafite/química , Antibacterianos/farmacologia , Antibacterianos/química , Luz
5.
Inorg Chem ; 62(46): 19087-19095, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37934916

RESUMO

Triplet energy transfer (TET) from semiconductor quantum dots (QDs) is an emerging strategy for sensitizing molecular triplets that have great potential in many applications. Here, CdSe QDs with varying sizes and 1-pyrenecarboxylic acid (PCA) are selected as the triplet donor and acceptor, respectively, to study the TET and charge transfer dynamics as well as enhanced singlet oxygen (1O2) generation properties. The results from static and transient spectroscopy measurements demonstrate that both the TET and hole transfer occur at the QDs-PCA interface. The observed significant drop in TET efficiency from 52 to 8% with increasing QD size results from the reduced TET driving force between the QDs and PCA, which is further confirmed by the more efficient sensitization of the anthracene derivative with a large TET driving force. In contrast, the hole transfer efficiency displays a small decrease with an increasing QD size due to a slight change in the hole driving force. The sensitized PCA triplets show a good ability of 1O2 generation, and the 1O2 formation rate increases 10-fold as the QD size decreases from 3.3 to 2.4 nm. These findings provide a profound understanding of the TET and hole transfer mechanism from QDs to molecules and are significant in designing efficient 1O2 generation systems based on semiconductor QDs and triplet molecules.

6.
Phys Chem Chem Phys ; 25(12): 8913-8920, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36916640

RESUMO

Triplet energy transfer (TET) from semiconductor quantum dots (QDs) to molecular triplets has potential applications in photon up-conversion and singlet oxygen generation. Here, we have constructed a complex consisting of CdTe QDs as the donor and 9-anthracenecarboxylic acid (ACA) as the triplet acceptor, and studied the TET pathways and enhanced singlet oxygen generation properties. The results from steady-state and time-resolved spectroscopy demonstrate efficient TET with a total efficiency of over 80% from photoexcited CdTe QDs to ACA. Dynamical analysis clearly indicates two distinctive TET channels - hot electron exchange and thermalized electron exchange - mediating the TET process in the CdTe QDs-ACA complex. The TET efficiencies from hot electron exchange at high energetic levels and thermalized electron exchange on the lowest exciton state can reach ∼27% and ∼85%, respectively, following 530 nm excitation. This efficient TET endows the CdTe QDs-ACA complex with a good capability of generating singlet oxygen species with a yield of up to ∼59%. These findings contribute further insights to the mechanisms of interfacial TET processes and are significant in designing efficient TET systems based on semiconductor nanoparticles and triplet molecules.

7.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430740

RESUMO

Cu2V2O7/Cu3V2O8/g-C3N4 heterojunctions (CVCs) were prepared successfully by the reheating synthesis method. The thermal etching process increased the specific surface area. The formation of heterojunctions enhanced the visible light absorption and improved the separation efficiency of photoinduced charge carriers. Therefore, CVCs exhibited superior adsorption capacity and photocatalytic performance in comparison with pristine g-C3N4 (CN). CVC-2 (containing 2 wt% of Cu2V2O7/Cu3V2O8) possessed the best synergistic removal efficiency for removal of dyes and antibiotics, in which 96.2% of methylene blue (MB), 97.3% of rhodamine B (RhB), 83.0% of ciprofloxacin (CIP), 86.0% of tetracycline (TC) and 80.5% of oxytetracycline (OTC) were eliminated by the adsorption and photocatalysis synergistic effect under visible light irradiation. The pseudo first order rate constants of MB and RhB photocatalytic degradation on CVC-2 were 3 times and 10 times that of pristine CN. For photocatalytic degradation of CIP, TC and OTC, it was 3.6, 1.8 and 6.1 times that of CN. DRS, XPS VB and ESR results suggested that CVCs had the characteristics of a Z-scheme photocatalytic system. This study provides a reliable reference for the treatment of real wastewater by the adsorption and photocatalysis synergistic process.


Assuntos
Poluentes Ambientais , Oxitetraciclina , Adsorção , Tetraciclina , Ciprofloxacina , Antibacterianos , Azul de Metileno
8.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077402

RESUMO

In this study, we first manufactured ultrathin g-C3N4 (CN) nanosheets by thermal etching and ultrasonic techniques. Then, EuVO4 (EV) nanoparticles were loaded onto CN nanosheets to form EuVO4/g-C3N4 heterojunctions (EVCs). The ultrathin and porous structure of the EVCs increased the specific surface area and reaction active sites. The formation of the heterostructure extended visible light absorption and accelerated the separation of charge carriers. These two factors were advantageous to promote the synergistic effect of adsorption and photocatalysis, and ultimately enhanced the adsorption capability and photocatalytic removal efficiency of methylene blue (MB). EVC-2 (2 wt% of EV) exhibited the highest adsorption and photocatalytic performance. Almost 100% of MB was eliminated via the adsorption-photocatalysis synergistic process over EVC-2. The MB adsorption capability of EVC-2 was 6.2 times that of CN, and the zero-orderreaction rate constant was 5 times that of CN. The MB adsorption on EVC-2 followed the pseudo second-order kinetics model and the adsorption isotherm data complied with the Langmuir isotherm model. The photocatalytic degradation data of MB on EVC-2 obeyed the zero-order kinetics equation in 0-10 min and abided by the first-order kinetics equation for10-30 min. This study provided a promising EVC heterojunctions with superior synergetic effect of adsorption and photocatalysis for the potential application in wastewater treatment.


Assuntos
Azul de Metileno , Purificação da Água , Adsorção , Catálise , Luz , Azul de Metileno/química
9.
Opt Express ; 29(4): 5213-5225, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726061

RESUMO

Graphene-based materials have been attracted many attentions due to their excellent properties and potential applications in many fields. Graphene also provides a flexible substrate to develop novel functional materials by hybridizing with other organic or inorganic components. Herein, we report the functionalization of reduced graphene oxide (RGO) with an azobenzene derivative (BNB-t8) containing the π-conjugated moiety and hydrogen bonding groups, to improve the optical and nonlinear optical properties of RGO. With the introducing of BNB-t8, a new absorption band is formed and dominates the absorption spectrum, clearly demonstrates that the BNB-t8 has been hybridized with RGO, by combining the analysis of Raman and XRD data. Femtosecond Z-scan results present a highly enhanced saturable optical absorption of BNB-t8/RGO hybrid compared with that of RGO. By optimizing the hybridization ratio of BNB-t8 to RGO, the saturable absorption coefficient of BNB-t8/RGO hybrid reaches to -237 m/W, 38 times larger than that of RGO (-6.2 m/W). In the meantime, the third-order susceptibility χ(3) of BNB-t8/RGO hybrid is aslo enhanced by 8 times to be 5.18×10-13 esu. These enhancements of nonlinear optical properties of BNB-t8/RGO hybrid mainly arise from the charge transfer from RGO to BNB-t8. Femtosecond transient absorption measurements reveal that the charge separation takes place in 0.28 ps and the charge recombination in 2.0 ps, indicating a strong electron coupling and thus an enhanced electron delocalization in BNB-t8/RGO hybrid compared with those in RGO. We suggest that the noncovalent π-π interaction plays the dominant role for enhancing the electron delocalization of RGO after hybridizing with BNB-t8, while the hydrogen bonding interaction reinforce the coupling interaction between BNB-t8 and RGO moieties in the hybrid. The as-prepared BNB-t8/RGO hybrid with high saturable absorption coefficient with an ultrafast response presents a potential candidate as saturable absorber of mode-locked laser.

10.
Molecules ; 25(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486057

RESUMO

Nanomaterials have been widely used in biomedical sciences; however, the mechanism of interaction between nanoparticles and biomolecules is still not fully understood. In the present study, we report the interaction mechanism between differently sized Ag nanoparticles and the improved light-oxygen-voltage (iLOV) protein. The steady-state and time-resolved fluorescence results demonstrated that the fluorescence intensity and lifetime of the iLOV protein decreased upon its adsorption onto Ag nanoparticles, and this decrease was dependent upon nanoparticle size. Further, we showed that the decrease of fluorescence intensity and lifetime arose from electron transfer between iLOV and Ag nanoparticles. Moreover, through point mutation and controlled experimentation, we demonstrated for the first time that electron transfer between iLOV and Ag nanoparticles is mediated by the tryptophan residue in the iLOV protein. These results are of great importance in revealing the function of iLOV protein as it applies to biomolecular sensors, the field of nano-photonics, and the interaction mechanism between the protein and nanoparticles.


Assuntos
Transporte de Elétrons , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Prata/química , Adsorção , Técnicas Eletroquímicas , Elétrons , Fluorescência , Proteínas Luminescentes/química , Oxigênio/química , Tamanho da Partícula , Ligação Proteica , Riboflavina/química , Espectrometria de Fluorescência , Temperatura , Triptofano/química
11.
Hum Mutat ; 38(1): 25-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27676360

RESUMO

Exome sequencing has been widely used to identify the genetic variants underlying human genetic disorders for clinical diagnoses, but the identification of pathogenic sequence variants among the huge amounts of benign ones is complicated and challenging. Here, we describe a new Web server named mirVAFC for pathogenic sequence variants prioritizations from clinical exome sequencing (CES) variant data of single individual or family. The mirVAFC is able to comprehensively annotate sequence variants, filter out most irrelevant variants using custom criteria, classify variants into different categories as for estimated pathogenicity, and lastly provide pathogenic variants prioritizations based on classifications and mutation effects. Case studies using different types of datasets for different diseases from publication and our in-house data have revealed that mirVAFC can efficiently identify the right pathogenic candidates as in original work in each case. Overall, the Web server mirVAFC is specifically developed for pathogenic sequence variant identifications from family-based CES variants using classification-based prioritizations. The mirVAFC Web server is freely accessible at https://www.wzgenomics.cn/mirVAFC/.


Assuntos
Biologia Computacional/métodos , Exoma , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Software , Navegador , Esclerose Lateral Amiotrófica/genética , Transtorno do Espectro Autista/genética , Bases de Dados Genéticas , Humanos , Anotação de Sequência Molecular , Análise de Sequência de DNA , Espondilólise/genética , Sequenciamento do Exoma
12.
Opt Express ; 25(10): 11503-11513, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788715

RESUMO

Here, we present the investigations of photo-isomerization behavior and the nonlinear optical properties of azobenzene derivative LB films. The few-layer LB films of AOB-t4 and BNB-t4 exhibit positive nonlinear refraction and two-photon absorption properties as revealed by picosecond Z-scan. The increased conjugation by introducing an oxadiazole group improves the photo-isomerization rate and the nonlinear optical properties, due to a weaker intermolecular interaction and the formation of J-aggregates within AOB-t4 LB film. The third-order susceptibility of cis-AOB-t4 9-layer LB film reaches 1.866 × 10-9 esu and the two-photon absorption coefficient is on the order of 10-8 m/W. Interestingly, the 15-layer AOB-t4 LB film shows negative nonlinear refraction and saturable absorption. Taken together, we have demonstrated the switchable nonlinear optical absorption and refraction properties of AOB-t4 LB film with changing film thickness, which is of significance for nonlinear optics and photonics applications.

13.
Mol Psychiatry ; 21(2): 290-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25849321

RESUMO

Currently, many studies on neuropsychiatric disorders have utilized massive trio-based whole-exome sequencing (WES) and whole-genome sequencing (WGS) to identify numerous de novo mutations (DNMs). Here, we retrieved 17,104 DNMs from 3555 trios across four neuropsychiatric disorders: autism spectrum disorder, epileptic encephalopathy, intellectual disability and schizophrenia, in addition to unaffected siblings (control), from 36 studies by WES/WGS. After eliminating non-exonic variants, we focused on 3334 exonic DNMs for evaluation of their association with these diseases. Our results revealed a higher prevalence of DNMs in the probands of all four disorders compared with the one in the controls (P<1.3 × 10(-7)). The elevated DNM frequency is dominated by loss-of-function/deleterious single-nucleotide variants and frameshift indels (that is, extreme mutations, P<4.5 × 10(-5)). With extensive annotation of these 'extreme' mutations, we prioritized 764 candidate genes in these four disorders. A combined analysis of Gene Ontology, microRNA targets and transcription factor targets revealed shared biological process and non-coding regulatory elements of candidate genes in the pathology of neuropsychiatric disorders. In addition, weighted gene co-expression network analysis of human laminar-specific neocortical expression data showed that candidate genes are convergent on eight shared modules with specific layer enrichment and biological process features. Furthermore, we identified that 53 candidate genes are associated with more than one disorder (P<0.000001), suggesting a possibly shared genetic etiology underlying these disorders. Particularly, DNMs of the SCN2A gene are frequently occurred across all four disorders. Finally, we constructed a freely available NPdenovo database, which provides a comprehensive catalog of the DNMs identified in neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Esquizofrenia/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Exoma/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Mutação/genética , Neuropsiquiatria , Razão de Chances , Análise de Sequência de DNA
14.
Nucleic Acids Res ; 43(Database issue): D893-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25324312

RESUMO

Epilepsy is one of the most prevalent chronic neurological disorders, afflicting about 3.5-6.5 per 1000 children and 10.8 per 1000 elderly people. With intensive effort made during the last two decades, numerous genes and mutations have been published to be associated with the disease. An organized resource integrating and annotating the ever-increasing genetic data will be imperative to acquire a global view of the cutting-edge in epilepsy research. Herein, we developed EpilepsyGene (http://61.152.91.49/EpilepsyGene). It contains cumulative to date 499 genes and 3931 variants associated with 331 clinical phenotypes collected from 818 publications. Furthermore, in-depth data mining was performed to gain insights into the understanding of the data, including functional annotation, gene prioritization, functional analysis of prioritized genes and overlap analysis focusing on the comorbidity. An intuitive web interface to search and browse the diversified genetic data was also developed to facilitate access to the data of interest. In general, EpilepsyGene is designed to be a central genetic database to provide the research community substantial convenience to uncover the genetic basis of epilepsy.


Assuntos
Bases de Dados de Ácidos Nucleicos , Epilepsia/genética , Mutação , Comorbidade , Epilepsia/epidemiologia , Redes Reguladoras de Genes , Genes , Humanos , Internet , Anotação de Sequência Molecular
15.
J Med Genet ; 52(4): 275-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25596308

RESUMO

OBJECTIVES: Recently, several studies documented that de novo mutations (DNMs) play important roles in the aetiology of sporadic diseases. Next-generation sequencing (NGS) enables variant calling at single-base resolution on a genome-wide scale. However, accurate identification of DNMs from NGS data still remains a major challenge. We developed mirTrios, a web server, to accurately detect DNMs and rare inherited mutations from NGS data in sporadic diseases. METHODS: The expectation-maximisation (EM) model was adopted to accurately identify DNMs from variant call files of a trio generated by GATK (Genome Analysis Toolkit). The GATK results, which contain certain basic properties (such as PL, PRT and PART), are iteratively integrated into the EM model to strike a threshold for DNMs detection. Training sets of true and false positive DNMs in the EM model were built from whole genome sequencing data of 64 trios. RESULTS: With our in-house whole exome sequencing datasets from 20 trios, mirTrios totally identified 27 DNMs in the coding region, 25 of which (92.6%) are validated as true positives. In addition, to facilitate the interpretation of diverse mutations, mirTrios can also be employed in the identification of rare inherited mutations. Embedded with abundant annotation of DNMs and rare inherited mutations, mirTrios also supports known diagnostic variants and causative gene identification, as well as the prioritisation of novel and promising candidate genes. CONCLUSIONS: mirTrios provides an intuitive interface for the general geneticist and clinician, and can be widely used for detection of DNMs and rare inherited mutations, and annotation in sporadic diseases. mirTrios is freely available at http://centre.bioinformatics.zj.cn/mirTrios/.


Assuntos
Biologia Computacional/métodos , Análise Mutacional de DNA/métodos , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Modelos Genéticos , Análise de Sequência de DNA/métodos , Humanos , Mutação
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(10): 2797-801, 2015 Oct.
Artigo em Zh | MEDLINE | ID: mdl-26904821

RESUMO

The cellular redox states directly affect cell proliferation, differentiation and apoptosis, and the redox states changes is particularly important to the regulation of cell survival or death. Thioredoxin is a kind of oxidation regulatory protein which is widely exists in organisms, and the change of redox states is also an important process in redox regulation. In this work, we have used the site-directed mutagenesis of protein, SDS-polyacrylamide gel electrophoresis fluorescence spectroscopy and circular dichroism etc., to investigate redox states changes between TRX (E. coli) and glutathione peroxidase(GPX3) during their interaction. By observing the fluorescence spectra of TRX and its mutants, we have studied the protein interactions as well as the redox states switching between oxidation state TRX and the reduced state GPX3. The results demonstrate the presence of interactions and electron exchanges occurring between reduced GPX3 and oxidized TRX, which is of significance for revealing the physical and chemical mechanism of TRX in intracellular signal transduction.


Assuntos
Fluorescência , Oxirredução , Apoptose , Dicroísmo Circular , Escherichia coli , Corantes Fluorescentes , Transdução de Sinais , Espectrometria de Fluorescência , Tiorredoxinas
17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(3): 777-81, 2014 Mar.
Artigo em Zh | MEDLINE | ID: mdl-25208411

RESUMO

This paper made use of three-dimensional fluorescence and ultraviolet-absorption spectrum to analyze the spectral characteristics of etroleum ether extract from Guizhou flue-cured tobacco and the overall characteristic spectral information of tobacco chemical substances were obtained. The three dimensional fluorescence and ultraviolet-visible absorption spectrum of each petroleum ether extract of flue-cured tobacco from different areas are generally similar, but their intensity is different. There have three characteristic peaks in three dimensional fluorescence spectra: I: Ex/Em = 297/326 nm, II: Ex/Em = 250/330 nm, III: Ex/Em = 225/336 nm respectively and meanwhile the order of these peaks intensity is I > III > II. The ultraviolet-visible absorption spectrum in 300-300 nm range presents four characteristic absorption peaks, whose maximum absorption wavelength are 329, 419, 445 and 419 nm respectively. Meanwhile, in accord with the relative intensity of characteristic peaks, it is known that there exist differences in the relative contents of the total chemical substances obtained from different flavor styles of the flue-cured tobacco. The clustering analysis results of three-dimensional fluorescence intensity score (D) and intensity ratio (R) show that in a certain range of distance coefficient, the flue-cured tobacco from different regions in Guizhou can be clearly divided into two classes "mildly sweet "and "alcohol sweet ". The classification can be well achieved in the smaller distance coefficient according to the ratio cluster of fluorescence intensity instead of the score cluster of fluorescence intensity. The method of three-dimensional fluorescence was better than that of ultraviolet-visible spectrometry in the matter of the clustering characteristic.


Assuntos
Nicotiana/classificação , Odorantes/análise , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
18.
Artigo em Inglês | MEDLINE | ID: mdl-38946393

RESUMO

Photoluminescence (PL) metal nanoclusters (NCs) have attracted extensive attention due to their excellent physicochemical properties, good biocompatibility, and broad application prospects. However, developing water-soluble PL metal NCs with a high quantum yield (QY) and high stability for visual drug delivery remains a great challenge. Herein, we have synthesized ultrabright l-Arg-ATT-Au/Ag NCs (Au/Ag NCs) with a PL QY as high as 73% and excellent photostability by heteroatom doping and surface rigidization in aqueous solution. The as-prepared Au/Ag NCs can maintain a high QY of over 61% in a wide pH range and various ionic environments as well as a respectable resistance to photobleaching. The results from structure characterization and steady-state and time-resolved spectroscopic analysis reveal that Ag doping into Au NCs not only effectively modifies the electronic structure and photostability but also significantly regulates the interfacial dynamics of the excited states and enhances the PL QY of Au/Ag NCs. Studies in vitro indicate Au/Ag NCs have a high loading capacity and pH-triggered release ability of doxorubicin (DOX) that can be visualized from the quenching and recovery of PL intensity and lifetime. Imaging-guided experiments in cancer cells show that DOX of Au/Ag NCs-DOX agents can be efficiently delivered and released in the nucleus with preferential accumulation in the nucleolus, facilitating deep insight into the drug action sites and pharmacological mechanisms. Moreover, the evaluation of anticancer activity in vivo reveals an outstanding suppression rate of 90.2% for mice tumors. These findings demonstrate Au/Ag NCs to be a superior platform for bioimaging and visual drug delivery in biomedical applications.

19.
Adv Mater ; : e2404576, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696266

RESUMO

Although evidence indicates that the abnormal accumulation of α-synuclein (α-syn) in dopamine neurons of the substantia nigra is the main pathological feature of Parkinson's disease (PD), no compounds that have both α-syn antiaggregation and α-syn degradation functions have been successful in treating the disease in the clinic. Here, it is shown that black phosphorus nanosheets (BPNSs) interact directly with α-syn fibrils to trigger their disaggregation for PD treatment. Moreover, BPNSs have a specific affinity for α-syn through van der Waals forces. And BPNSs are found to activate autophagy to maintain α-syn homeostasis, improve mitochondrial dysfunction, reduce reactive oxygen species levels, and rescue neuronal death and synaptic loss in PC12 cells. It is also observed that BPNSs penetrate the blood-brain barrier and protect against dopamine neuron loss, alleviating behavioral disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model and hA53T α-syn transgenic mice. Together, the study reveals that BPNSs have the potential as a novel integrated nanomedicine for clinical diagnosis and treatment of neurological diseases.

20.
Chem Commun (Camb) ; 59(38): 5721-5724, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37092283

RESUMO

Novel lead-free non-perovskite blue-emitting cesium bromine (CsBr) QDs have been prepared using a ligand-assisted re-precipitation method. A high photoluminescence quantum yield of over 92.0% makes the CsBr QDs an efficient color-conversion candidate for fabricating white-light-emitting diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA