Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(51): 20333-8, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22123986

RESUMO

Telomerase is a specialized reverse transcriptase containing an intrinsic telomerase RNA (TR) which provides the template for telomeric DNA synthesis. Distinct from conventional reverse transcriptases, telomerase has evolved a unique TR-binding domain (TRBD) in the catalytic telomerase reverse transcriptase (TERT) protein, integral for ribonucleoprotein assembly. Two structural elements in the vertebrate TR, the pseudoknot and CR4/5, bind TERT independently and are essential for telomerase enzymatic activity. However, the details of the TR-TERT interaction have remained elusive. In this study, we employed a photoaffinity cross-linking approach to map the CR4/5-TRBD RNA-protein binding interface by identifying RNA and protein residues in close proximity. Photoreactive 5-iodouridines were incorporated into the medaka CR4/5 RNA fragment and UV cross-linked to the medaka TRBD protein fragment. The cross-linking RNA residues were identified by alkaline partial hydrolysis and cross-linked protein residues were identified by mass spectrometry. Three CR4/5 RNA residues (U182, U187, and U205) were found cross-linking to TRBD amino acids Tyr503, Phe355, and Trp477, respectively. This CR4/5 binding pocket is distinct and separate from the previously proposed T pocket in the Tetrahymena TRBD. Based on homologous structural models, our cross-linking data position the essential loop L6.1 adjacent to the TERT C-terminal extension domain. We thus propose that stem-loop 6.1 facilitates proper TERT folding by interacting with both TRBD and C-terminal extension. Revealing the telomerase CR4/5-TRBD binding interface with single-residue resolution provides important insights into telomerase ribonucleoprotein architecture and the function of the essential CR4/5 domain.


Assuntos
Proteínas de Ligação a RNA/química , RNA/química , Ribonucleoproteínas/química , Telomerase/química , Catálise , Reagentes de Ligações Cruzadas/química , Escherichia coli/genética , Humanos , Cinética , Espectrometria de Massas/métodos , Modelos Genéticos , Modelos Moleculares , Conformação Molecular , Conformação de Ácido Nucleico , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tetrahymena/metabolismo
2.
Methods Mol Biol ; 1587: 161-169, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28324508

RESUMO

Telomerase is a unique reverse transcriptase that replicates the telomeric DNA at most eukaryotic chromosomal ends. The telomerase consists of the catalytic protein subunit TERT and the RNA component TR that provides the template for telomeric DNA synthesis. In vitro reconstitution of telomerase core components in large quantity is the prerequisite to studying the catalytic mechanisms of telomerase at the structural level; however, large-scale preparation of recombinant telomerase, especially that of higher eukaryotes, has been a big challenge for a long time. It has been known that the CR4/5 domain of the vertebrate TR binds to the TRBD domain of TERT and the interaction is essential to the assembly and enzymatic activity of telomerase. We assembled the TRBD-CR4/5 ribonucleoprotein complex of the medaka fish telomerase in vitro and determined its atomic structure through X-ray crystallography. Our study provides the structural insight into the RNA-protein recognition mechanism that is common to most eukaryotic telomerase. The methods of our study are also applicable to large-scale preparations of other ribonucleoprotein complexes for structural studies.


Assuntos
Domínio Catalítico/genética , Telomerase/genética , Vertebrados/genética , Animais , Sequência de Bases , Sítios de Ligação/genética , Cromossomos/genética , Cristalização/métodos , Cristalografia por Raios X/métodos , Eucariotos/genética , Conformação de Ácido Nucleico , Ligação Proteica/genética , RNA/genética
3.
Bio Protoc ; 5(16)2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29104888

RESUMO

Telomerase is a large ribonucleoprotein complex that replicates the linear chromosome ends in most eukaryotes. Large-scale preparation of the telomerase core components in vitro has long been a big challenge in this field, hindering the understanding of the catalytic mechanism of telomerase, as well as slowing down the development of telomerase inhibitors for cancer therapy. We have successfully developed a protocol for large-scale preparation of the TRBD-CR4/5 complex of the medaka telomerase in vitro, and used this method to study the high-resolution structure of the TRBD-CR4/5 complex by X-ray crystallography. This procedure may be also adapted to purify other protein-RNA complexes for structural studies.

4.
Nat Commun ; 6: 6105, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25598218

RESUMO

Telomerase RNA (TER) is an essential component of the telomerase ribonucleoprotein complex. The mechanism for TER 3'-end processing is highly divergent among different organisms. Here we report a unique spliceosome-mediated TER 3'-end cleavage mechanism in Neurospora crassa that is distinct from that found specifically in the fission yeast Schizosaccharomyces pombe. While the S. pombe TER intron contains the canonical 5'-splice site GUAUGU, the N. crassa TER intron contains a non-canonical 5'-splice site AUAAGU that alone prevents the second step of splicing and promotes spliceosomal cleavage. The unique N. crassa TER 5'-splice site sequence is evolutionarily conserved in TERs from Pezizomycotina and early branching Taphrinomycotina species. This suggests that the widespread and basal N. crassa-type spliceosomal cleavage mechanism is more ancestral than the S. pombe-type. The discovery of a prevalent, yet distinct, spliceosomal cleavage mechanism throughout diverse fungal clades furthers our understanding of TER evolution and non-coding RNA processing.


Assuntos
Neurospora crassa/metabolismo , RNA Fúngico/metabolismo , RNA/metabolismo , Spliceossomos/metabolismo , Telomerase/metabolismo , Evolução Molecular , Fungos/metabolismo , Dados de Sequência Molecular , Splicing de RNA/fisiologia
5.
Nat Struct Mol Biol ; 21(6): 507-12, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24793650

RESUMO

Telomerase is a large ribonucleoprotein complex minimally composed of a catalytic telomerase reverse transcriptase (TERT) and an RNA component (TR) that provides the template for telomeric DNA synthesis. However, it remains unclear how TERT and TR assemble into a functional telomerase. Here we report the crystal structure of the conserved regions 4 and 5 (CR4/5) of TR in complex with the TR-binding domain (TRBD) of TERT from the teleost fish Oryzias latipes. The structure shows that CR4/5 adopts an L-shaped three-way-junction conformation with its two arms clamping onto TRBD. Both the sequence and conformation of CR4/5 are required for the interaction. Our structural and mutational analyses suggest that the observed CR4/5-TRBD recognition is common to most eukaryotes, and CR4/5 in vertebrate TR might have a similar role in telomerase regulation as that of stem-loop IV in Tetrahymena TR.


Assuntos
Oryzias/genética , RNA/química , Telomerase/química , Telomerase/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA