Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(18): 3983-4002.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657419

RESUMO

Prime editing enables a wide variety of precise genome edits in living cells. Here we use protein evolution and engineering to generate prime editors with reduced size and improved efficiency. Using phage-assisted evolution, we improved editing efficiencies of compact reverse transcriptases by up to 22-fold and generated prime editors that are 516-810 base pairs smaller than the current-generation editor PEmax. We discovered that different reverse transcriptases specialize in different types of edits and used this insight to generate reverse transcriptases that outperform PEmax and PEmaxΔRNaseH, the truncated editor used in dual-AAV delivery systems. Finally, we generated Cas9 domains that improve prime editing. These resulting editors (PE6a-g) enhance therapeutically relevant editing in patient-derived fibroblasts and primary human T-cells. PE6 variants also enable longer insertions to be installed in vivo following dual-AAV delivery, achieving 40% loxP insertion in the cortex of the murine brain, a 24-fold improvement compared to previous state-of-the-art prime editors.


Assuntos
Bacteriófagos , Engenharia de Proteínas , Humanos , Animais , Camundongos , Bacteriófagos/genética , Encéfalo , Córtex Cerebral , RNA Polimerases Dirigidas por DNA
2.
Cell ; 185(2): 250-265.e16, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021064

RESUMO

Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Engenharia Genética , Proteínas/uso terapêutico , Vírion/genética , Animais , Sequência de Bases , Cegueira/genética , Cegueira/terapia , Encéfalo/metabolismo , DNA/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Edição de Genes , Células HEK293 , Humanos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/metabolismo , Epitélio Pigmentado da Retina/patologia , Retroviridae , Vírion/ultraestrutura , Visão Ocular
3.
Nature ; 576(7785): 149-157, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31634902

RESUMO

Most genetic variants that contribute to disease1 are challenging to correct efficiently and without excess byproducts2-5. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay-Sachs disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to insert various tags and epitopes precisely into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, has complementary strengths and weaknesses compared to base editing, and induces much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle could correct up to 89% of known genetic variants associated with human diseases.


Assuntos
DNA/genética , Edição de Genes , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Genoma , Humanos , Mutação Puntual , Saccharomyces cerevisiae
4.
Nat Biotechnol ; 42(2): 253-264, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37142705

RESUMO

Realizing the promise of prime editing for the study and treatment of genetic disorders requires efficient methods for delivering prime editors (PEs) in vivo. Here we describe the identification of bottlenecks limiting adeno-associated virus (AAV)-mediated prime editing in vivo and the development of AAV-PE vectors with increased PE expression, prime editing guide RNA stability and modulation of DNA repair. The resulting dual-AAV systems, v1em and v3em PE-AAV, enable therapeutically relevant prime editing in mouse brain (up to 42% efficiency in cortex), liver (up to 46%) and heart (up to 11%). We apply these systems to install putative protective mutations in vivo for Alzheimer's disease in astrocytes and for coronary artery disease in hepatocytes. In vivo prime editing with v3em PE-AAV caused no detectable off-target effects or significant changes in liver enzymes or histology. Optimized PE-AAV systems support the highest unenriched levels of in vivo prime editing reported to date, facilitating the study and potential treatment of diseases with a genetic component.


Assuntos
Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Camundongos , Animais , Edição de Genes/métodos , Fígado/metabolismo , Hepatócitos/metabolismo , Encéfalo , Sistemas CRISPR-Cas
5.
Nat Biotechnol ; 42(4): 638-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37322276

RESUMO

Base editors have substantial promise in basic research and as therapeutic agents for the correction of pathogenic mutations. The development of adenine transversion editors has posed a particular challenge. Here we report a class of base editors that enable efficient adenine transversion, including precise A•T-to-C•G editing. We found that a fusion of mouse alkyladenine DNA glycosylase (mAAG) with nickase Cas9 and deaminase TadA-8e catalyzed adenosine transversion in specific sequence contexts. Laboratory evolution of mAAG significantly increased A-to-C/T conversion efficiency up to 73% and expanded the targeting scope. Further engineering yielded adenine-to-cytosine base editors (ACBEs), including a high-accuracy ACBE-Q variant, that precisely install A-to-C transversions with minimal Cas9-independent off-targeting effects. ACBEs mediated high-efficiency installation or correction of five pathogenic mutations in mouse embryos and human cell lines. Founder mice showed 44-56% average A-to-C edits and allelic frequencies of up to 100%. Adenosine transversion editors substantially expand the capabilities and possible applications of base editing technology.


Assuntos
Adenina , Edição de Genes , Animais , Camundongos , Humanos , Adenina/metabolismo , Mutação , Citosina/metabolismo , Adenosina , Sistemas CRISPR-Cas/genética , Mamíferos/genética
6.
Nat Biotechnol ; 42(3): 424-436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37169967

RESUMO

Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.


Assuntos
Neoplasias Pancreáticas , RNA Guia de Sistemas CRISPR-Cas , Camundongos , Humanos , Animais , Camundongos Transgênicos , Mutação/genética , Neoplasias Pancreáticas/genética , Linhagem Celular , Edição de Genes , Sistemas CRISPR-Cas/genética
7.
Nat Protoc ; 17(11): 2431-2468, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35941224

RESUMO

Prime editing (PE) is a precision gene editing technology that enables the programmable installation of substitutions, insertions and deletions in cells and animals without requiring double-strand DNA breaks (DSBs). The mechanism of PE makes it less dependent on cellular replication and endogenous DNA repair than homology-directed repair-based approaches, and its ability to precisely install edits without creating DSBs minimizes indels and other undesired outcomes. The capabilities of PE have also expanded since its original publication. Enhanced PE systems, PE4 and PE5, manipulate DNA repair pathways to increase PE efficiency and reduce indels. Other advances that improve PE efficiency include engineered pegRNAs (epegRNAs), which include a structured RNA motif to stabilize and protect pegRNA 3' ends, and the PEmax architecture, which improves editor expression and nuclear localization. New applications such as twin PE (twinPE) can precisely insert or delete hundreds of base pairs of DNA and can be used in tandem with recombinases to achieve gene-sized (>5 kb) insertions and inversions. Achieving optimal PE requires careful experimental design, and the large number of parameters that influence PE outcomes can be daunting. This protocol describes current best practices for conducting PE and twinPE experiments and describes the design and optimization of pegRNAs. We also offer guidelines for how to select the proper PE system (PE1 to PE5 and twinPE) for a given application. Finally, we provide detailed instructions on how to perform PE in mammalian cells. Compared with other procedures for editing human cells, PE offers greater precision and versatility, and can be completed within 2-4 weeks.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Edição de Genes/métodos , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA/genética , RNA Guia de Cinetoplastídeos/genética , Mamíferos/genética
8.
Nat Biotechnol ; 40(3): 402-410, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34608327

RESUMO

Prime editing enables the installation of virtually any combination of point mutations, small insertions or small deletions in the DNA of living cells. A prime editing guide RNA (pegRNA) directs the prime editor protein to the targeted locus and also encodes the desired edit. Here we show that degradation of the 3' region of the pegRNA that contains the reverse transcriptase template and the primer binding site can poison the activity of prime editing systems, impeding editing efficiency. We incorporated structured RNA motifs to the 3' terminus of pegRNAs that enhance their stability and prevent degradation of the 3' extension. The resulting engineered pegRNAs (epegRNAs) improve prime editing efficiency 3-4-fold in HeLa, U2OS and K562 cells and in primary human fibroblasts without increasing off-target editing activity. We optimized the choice of 3' structural motif and developed pegLIT, a computational tool to identify non-interfering nucleotide linkers between pegRNAs and 3' motifs. Finally, we showed that epegRNAs enhance the efficiency of the installation or correction of disease-relevant mutations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , DNA/genética , Edição de Genes/métodos , Humanos , RNA Guia de Cinetoplastídeos/genética , DNA Polimerase Dirigida por RNA/genética
9.
Nat Biotechnol ; 38(4): 471-481, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32042170

RESUMO

The targeting scope of Streptococcus pyogenes Cas9 (SpCas9) and its engineered variants is largely restricted to protospacer-adjacent motif (PAM) sequences containing G bases. Here we report the evolution of three new SpCas9 variants that collectively recognize NRNH PAMs (where R is A or G and H is A, C or T) using phage-assisted non-continuous evolution, three new phage-assisted continuous evolution strategies for DNA binding and a secondary selection for DNA cleavage. The targeting capabilities of these evolved variants and SpCas9-NG were characterized in HEK293T cells using a library of 11,776 genomically integrated protospacer-sgRNA pairs containing all possible NNNN PAMs. The evolved variants mediated indel formation and base editing in human cells and enabled A•T-to-G•C base editing of a sickle cell anemia mutation using a previously inaccessible CACC PAM. These new evolved SpCas9 variants, together with previously reported variants, in principle enable targeting of most NR PAM sequences and substantially reduce the fraction of genomic sites that are inaccessible by Cas9-based methods.


Assuntos
Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA/genética , DNA/metabolismo , Clivagem do DNA , Evolução Molecular Direcionada , Edição de Genes , Variação Genética , Genoma Humano/genética , Células HEK293 , Humanos , Mutação , Motivos de Nucleotídeos , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA